Skip to main content

Adaptive Feedforward Compensation of Disturbances

  • Chapter
  • First Online:

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

Adaptive feedforward compensation algorithms for the attenuation of broad-band disturbances are developed in this chapter. The proposed algorithms take into account the “positive” feedback coupling which appears in active vibration control systems using feedforward compensation. One considers also the case when a fixed feedback controller is present. The algorithms are evaluated in real time on the active flexible mechanical structure actuated by an inertial actuator which has been presented in Chap. 2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Different solutions for reducing the effect of this internal positive feedback are reviewed in [8, 9].

  2. 2.

    Design of adaptive AVC does not require either the model of the disturbance or the model of the primary path.

  3. 3.

    The complex variable \(z^{-1}\) will be used for characterizing the system’s behaviour in the frequency domain and the delay operator \(q^{-1}\) will be used for describing the system’s behaviour in the time domain.

  4. 4.

    The following notation for polynomials is used: \(A(q^{-1})=a_0+\sum _{i=1}^{n_A}a_iq^{-i}=a_0\,+\,q^{-1}A^*(q^{-1})\).

  5. 5.

    \(\hat{y}(t+1)\) is available before adaptation of parameters starts at \(t+1\).

  6. 6.

    In many cases, the argument \(q^{-1}\) or \(z^{-1}\) will be dropped out.

  7. 7.

    In the field of adaptive feedforward compensation names are associated to various adaptation algorithms. Algorithm II uses the same filtering of the regressor as FULMS algorithm but with a matrix adaptation gain which lead to a structure called “pseudolinear regression” [14]. So Algorithm II can be termed FUPLR. Algorithm III is obtained from a stability point of view and it can be termed FUSBA (stability based algorithm).

  8. 8.

    See Appendix D, Sect. D.2 for further details.

  9. 9.

    The results are valid for the asymptotic behaviour obtained when using a decreasing adaptation gain.

  10. 10.

    The fact that the disturbance is a broad-band signal will imply that one has persistence of excitation.

  11. 11.

    The inertial actuator is driven by an external source.

  12. 12.

    An array implementation as in [17] can be also considered.

  13. 13.

    The scalar adaptation gain algorithms presented in this book can be denoted as NFULMS (normalized FULMS) for Algorithm II and SFUSBA (scalar FUSBA) for Algorithm III.

  14. 14.

    This algorithm can be termed FUeSBA since both the input and the error are filtered.

  15. 15.

    For the adaptive schemes, the PSD is evaluated after the adaptation transient has settled.

References

  1. Burgess J (1981) Active adaptive sound control in a duct: a computer simulation. J Acoust Soc Am 70:715–726

    Article  Google Scholar 

  2. Widrow B, Shur D, Shaffer S (1981) On adaptive inverse control. In: Proceedings of the 15th asilomar conference circuits, systems and computers. Pacific Grove, CA, USA

    Google Scholar 

  3. Widrow B, Stearns S (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  4. Elliott S, Nelson P (1994) Active noise control. Noise/news international, pp 75–98

    Google Scholar 

  5. Elliott S, Sutton T (1996) Performance of feedforward and feedback systems for active control. IEEE Trans Speech Audio Process 4(3):214–223. doi:10.1109/89.496217

    Article  Google Scholar 

  6. Jacobson CA, Johnson CR, Jr, McCormick DC, Sethares WA (2001) Stability of active noise control algorithms. IEEE Signal Process Lett 8(3):74–76. doi:10.1109/97.905944

  7. Zeng J, de Callafon R (2006) Recursive filter estimation for feedforward noise cancellation with acoustic coupling. J Sound Vib 291(3–5):1061–1079. doi:10.1016/j.jsv.2005.07.016

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuo M, Morgan D (1996) Active noise control systems-algorithms and DSP implementation. Wiley, New York

    Google Scholar 

  9. Kuo S, Morgan D (1999) Active noise control: a tutorial review. Proc IEEE 87(6):943–973. doi:10.1109/5.763310

    Article  Google Scholar 

  10. Hu J, Linn J (2000) Feedforward active noise controller design in ducts without independent noise source measurements. IEEE Trans Control Syst Technol 8(3):443–455

    Article  Google Scholar 

  11. Landau I, Karimi A, Constantinescu A (2001) Direct controller order reduction by identification in closed loop. Automatica 37:1689–1702

    Article  MathSciNet  MATH  Google Scholar 

  12. Landau I, Alma M, Airimitoaie T (2011) Adaptive feedforward compensation algorithms for active vibration control with mechanical coupling. Automatica 47(10):2185–2196. doi:10.1016/j.automatica.2011.08.015

    Article  MathSciNet  MATH  Google Scholar 

  13. Landau ID, Lozano R, M’Saad M, Karimi A (2011) Adaptive control, 2nd edn. Springer, London

    Book  MATH  Google Scholar 

  14. Ljung L, Söderström T (1983) Theory and practice of recursive identification. MIT Press, Cambridge

    MATH  Google Scholar 

  15. Anderson B, Bitmead R, Johnson C, Kokotovic P, Kosut R, Mareels I, Praly L, Riedle B (1986) Stability of adaptive systems. MIT Press, Cambridge

    MATH  Google Scholar 

  16. Landau I, Zito G (2005) Digital control systems—design, identification and implementation. Springer, London

    Google Scholar 

  17. Montazeri P, Poshtan J (2010) A computationally efficient adaptive IIR solution to active noise and vibration control systems. IEEE Trans Autom Control AC-55:2671–2676

    Google Scholar 

  18. Alma M, Martinez J, Landau I, Buche G (2012) Design and tuning of reduced order H\(_\infty \) feedforward compensators for active vibration control. IEEE Trans Control Syst Technol 20(2):554–561. doi:10.1109/TCST.2011.2119485

    Article  Google Scholar 

  19. Eriksson L (1991) Development of the filtered-U LMS algorithm for active noise control. J Acoust Soc Am 89(1):257–261

    Article  Google Scholar 

  20. Larimore MG, Treichler JR, Johnson CR (1980) SHARF: An algorithm for adapting IIR digital filters. IEEE Trans Acoust Speech Signal Process 28(4):428–440. doi:10.1109/TASSP.1980.1163428

  21. Montazeri A, Poshtan J (2011) A new adaptive recursive RLS-based fast-array IIR filter for active noise and vibration control systems. Signal Process 91(1):98–113. doi:10.1016/j.sigpro.2010.06.013

    Article  MATH  Google Scholar 

  22. Sun X, Chen DS (2002) A new infinte impulse response filter-based adaptive algorithm for active noise control. J Sound Vib 258(2):385–397. doi:10.1006/jsvi.2002.5105

    Article  MATH  Google Scholar 

  23. Sun X, Meng G (2004) Steiglitz-Mcbride type adaptive IIR algorithm for active noise control. J Sound Vib 273(1–2):441–450. doi:10.1016/j.jsv.2003.07.023

    Article  Google Scholar 

  24. Alma M, Landau ID, Airimitoaie TB (2012) Adaptive feedforward compensation algorithms for AVC systems in the presence of a feedback controller. Automatica 48(10):982–985

    Article  MathSciNet  MATH  Google Scholar 

  25. Airimitoaie TB, Landau ID (2013) Improving adaptive feedforward vibration compensation by using integral+proportional adaptation. Automatica 49(5):1501–1505. doi:10.1016/j.automatica.2013.01.025

    Article  MathSciNet  MATH  Google Scholar 

  26. Widrow B, Hoff M (1960) Adaptive swithching circuits. Oric IRE WESCON Convention Record 4(Session 16):96–104

    Google Scholar 

  27. Widrow B (1971) Adaptive filters. In: Kalman R, DeClaris H (eds) Aspects of network and system theory. Holt, Rinehart and Winston

    Google Scholar 

  28. Billoud DG (2001) LL-6508 active control at lord corporation—A reality

    Google Scholar 

  29. Tang Y, Zhu ZC, Shen G, Li X (2015) Improved feedforward inverse control with adaptive refinement for acceleration tracking of electro-hydraulic shake table. J Vib Control. doi:10.1177/1077546314567725

  30. Xiang M, Wei T (2014) Autobalancing of high-speed rotors suspended by magnetic bearings using lms adaptive feedforward compensation. J Vib Control 20(9):1428–1436. doi:10.1177/1077546313479990. http://jvc.sagepub.com/content/20/9/1428.abstract

  31. Pan MC, Wei WT (2006) Adaptive focusing control of dvd drives in vehicle systems. J Vib Control 12(11):1239–1250. doi:10.1177/1077546306069037. http://jvc.sagepub.com/content/12/11/1239.abstract

  32. Akraminia M, Mahjoob MJ, Niazi AH (2015) Feedforward active noise control using wavelet frames: simulation and experimental results. J Vib Control. doi:10.1177/1077546315581939. http://jvc.sagepub.com/content/early/2015/06/04/1077546315581939.abstract

  33. Erdogan G, Alexander L, Rajamani R (2010) Adaptive vibration cancellation for tire-road friction coefficient estimation on winter maintenance vehicles. IEEE Trans Control Syst Technol 18(5):1023–1032. doi:10.1109/TCST.2009.2031326

    Article  Google Scholar 

  34. Hassibi B, Sayed A, Kailath T (1996) H\(_\infty \) optimality of the LMS algorithm. IEEE Trans Signal Process 44(2):267–280. doi:10.1109/78.485923

    Article  Google Scholar 

  35. Sayyarrodsari B, How J, Hassibi B, Carrier A (2001) Estimation-based synthesis of H\(_\infty \)-optimal adaptive FIR filters for filtered-LMS problems. IEEE Trans Signal Process 49(1):164–178. doi:10.1109/78.890358

    Article  Google Scholar 

  36. Fraanje R (2004) Robust and fast schemes in broadband active noise and vibration control. PhD thesis, University of Twente, Twente, The Netherlands

    Google Scholar 

  37. Popov V (1960) Criterii de stabilitate pentru sistemele automate conţinând elemente neunivoce, probleme de automatizare. Publishing House of the Romanian Academy, pp 143–151

    Google Scholar 

  38. Popov V (1966) Hiperstabilitatea Sistemelor Automate. Editura Academiei Republicii Socialiste România

    Google Scholar 

  39. Popov V (1963) Solution of a new stability problem for controlled systems. Autom Remote Control 24(1):1–23

    MathSciNet  MATH  Google Scholar 

  40. Popov V (1973) Hyperstability of control systems, trans. edn. Springer, Heidelberg

    Google Scholar 

  41. Landau I, Silveira H (1979) A stability theorem with applications to adaptive control. IEEE Trans Autom Control 24(2):305–312. doi:10.1109/TAC.1979.1102009

    Article  MathSciNet  MATH  Google Scholar 

  42. Landau I (1979) Adaptive control: the model reference approach. Marcel Dekker, New York

    MATH  Google Scholar 

  43. Landau I (1980) An extension of a stability theorem applicable to adaptive control. IEEE Trans Autom Control 25(4):814–817. doi:10.1109/TAC.1980.1102440

    Article  MathSciNet  MATH  Google Scholar 

  44. Landau ID, Airimitoaie TB, Alma M (2012) A Youla-Kučera parametrized adaptive feedforward compensator for active vibration control with mechanical coupling. Automatica 48(9):2152–2158. doi:10.1016/j.automatica.2012.05.066. http://www.sciencedirect.com/science/article/pii/S0005109812002397

  45. Landau ID, Airimitoaie TB, Alma M (2013) IIR Youla-Kučera parameterized adaptive feedforward compensators for active vibration control with mechanical coupling. IEEE Trans Control Syst Technol 21(3):765–779

    Article  Google Scholar 

  46. Treichler J, Larimore M, Johnson C, Jr (1978) Simple adaptive IIR filtering. In: IEEE international conference on acoustics, speech, and signal processing, ICASSP ’78, vol 3, pp 118–122. doi:10.1109/ICASSP.1978.1170389

  47. Mosquera C, Gomez J, Perez F, Sobreira M (1999) Adaptive IIR filters for active noise control. In: Sixth international congress on sound and vibration, ICSV ’99, pp 1571–1582

    Google Scholar 

  48. Snyder S (1994) Active control using IIR filters—a second look. In: 1994 IEEE international conference on acoustics, speech, and signal processing, 1994, ICASSP-94, vol 2, pp II/241 –II/244. doi:10.1109/ICASSP.1994.389675

  49. de Callafon R, Zeng J, Kinney C (2010) Active noise control in a forced-air cooling system. Control Eng Pract 18(9):1045–1052. doi:10.1016/j.conengprac.2010.05.007

  50. Yuan J (2007) Adaptive laguerre filters for active noise control. Appl Acoust 68(1):86–96. doi:10.1016/j.apacoust.2006.01.009. http://www.sciencedirect.com/science/article/pii/S0003682X06000260

  51. Moon SM, Cole DG, Clark RL (2006) Real-time implementation of adaptive feedback and feedforward generalized predictive control algorithm. J Sound Vib 294(12):82–96. doi:10.1016/j.jsv.2005.10.017. http://www.sciencedirect.com/science/article/pii/S0022460X05007030

  52. Moheimani SR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, London

    MATH  Google Scholar 

  53. Trindade MA Jr, Pagani CC, Oliveira, LPR (2015) Semi-modal active vibration control of plates using discrete piezoelectric modal filters. J Sound Vib 351:17–28. doi:10.1016/j.jsv.2015.04.034. http://www.sciencedirect.com/science/article/pii/S0022460X15003867

  54. Reza Moheimani S, Pota H, Petersen I (1997) Broadband disturbance attenuation over an entire beam. In: Control Conference (ECC), 1997 European, pp 3896–3901

    Google Scholar 

  55. Lin CY, Huang YH (2014) Enhancing vibration suppression in a periodically excited flexible beam by using a repetitive model predictive control strategy. J Vib Control. doi:10.1177/1077546314564451

  56. Lee Y, Halim D (2004) Vibration control experiments on a piezoelectric laminate plate using spatial feedforward control approach. In: 43rd IEEE conference on decision and control, 2004. CDC, vol 3, pp 2403–2408. doi:10.1109/CDC.2004.1428764

  57. Kuhnen K, Krejci P (2009) Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems. A new Preisach modeling approach. IEEE Trans Autom Control, 54(3), 537–550. doi:10.1109/TAC.2009.2012984

  58. Wang J, Wang Y, Cao S (2011) Add-on feedforward compensation for vibration rejection in HDD. IEEE/ASME Trans Mechatron 16(6):1164–1170. doi:10.1109/TMECH.2010.2085008

    Article  Google Scholar 

  59. Yuen S, Perrin D, Vasilyev N, del Nido P, Howe R (2010) Force tracking with feed-forward motion estimation for beating heart surgery. IEEE Trans Robot 26(5):888–896. doi:10.1109/TRO.2010.2053734

    Article  Google Scholar 

  60. Zhou Z, Chen X, Zhou B (2015) Feedforward compensation in vibration isolation system subject to base disturbance. J Vib Control 21(6):1201–1209. doi:10.1177/1077546313493311

    Article  Google Scholar 

  61. Gan Z, Hillis AJ, Darling J (2015) Adaptive control of an active seat for occupant vibration reduction. J Sound Vib 349:39–55. doi:10.1016/j.jsv.2015.03.050. http://www.sciencedirect.com/science/article/pii/S0022460X15002898

  62. Lee BH, Lee CW (2009) Model based feed-forward control of electromagnetic type active control engine-mount system. J Sound Vib 323(35):574–593. doi:10.1016/j.jsv.2009.01.033. http://www.sciencedirect.com/science/article/pii/S0022460X09000819

  63. Wildschek A, Bartosiewicz Z, Mozyrska D (2014) A multi-input multi-output adaptive feed-forward controller for vibration alleviation on a large blended wing body airliner. J Sound Vib 333(17):3859–3880. doi:10.1016/j.jsv.2014.04.021. http://www.sciencedirect.com/science/article/pii/S0022460X14002867

  64. Prakash S, Kumar TR, Raja S, Dwarakanathan D, Subramani H, Karthikeyan C (2016) Active vibration control of a full scale aircraft wing using a reconfigurable controller. J Sound Vib 361:32–49. doi:10.1016/j.jsv.2015.09.010. http://www.sciencedirect.com/science/article/pii/S0022460X15007130

  65. Vipperman J, Burdisso R (1995) Adaptive feedforward control of non-minimum phase structural systems. J Sound Vib 183(3):369–382. doi:10.1006/jsvi.1995.0260. http://www.sciencedirect.com/science/article/pii/S0022460X8570260X

  66. Hansen C, Snyder S, Qiu X, Brooks L, Moreau D (2012) Active Control of Noise and Vibration. CRC Press, Taylor and Francis Group, Milton Park

    Google Scholar 

  67. Hoagg J, Lacy S, Bernstein D (2005) Broadband adaptive disturbance rejection for a deployable optical telescope testbed. In: Proceedings of the American control conference, 2005, pp 4953–4958, vol 7. doi:10.1109/ACC.2005.1470791

  68. Ruppel T, Dong S, Rooms F, Osten W, Sawodny O (2013) Feedforward control of deformable membrane mirrors for adaptive optics. IEEE Trans Control Syst Technol 21(3):579–589. doi:10.1109/TCST.2012.2186813

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Doré Landau .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Landau, I.D., Airimitoaie, TB., Castellanos-Silva, A., Constantinescu, A. (2017). Adaptive Feedforward Compensation of Disturbances. In: Adaptive and Robust Active Vibration Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-41450-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41450-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41449-2

  • Online ISBN: 978-3-319-41450-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics