Shape-Controlled Nanoparticles for Drug Delivery and Targeting Applications

  • Gilles PonchelEmail author
  • Olivier Cauchois


Whatever nanoparticles are envisioned for, including vaccinal, imaging, diagnostic, or drug targeting applications, their considerable interest originates from a unique combination of a nanometric size and the possibility to considerably modulate their physicochemical properties, including their geometry. There are nowadays growing experimental evidences that the morphology and the shape of nanoparticles can significantly contribute to their pharmacokinetics in the body, by influencing various physicochemical mechanisms such as their diffusivity, interactions with biological materials, internalization by cells. We present here a review of the present knowledge in this field. After a brief discussion on the different phenomena on which shape can have an influence, the different preparation methods currently available to obtain nonspherical nanoparticles will be presented. Their pro and cons will be discussed, regarding surface properties control, scale-up potential, etc.


Nanoparticles Drug delivery Drug targeting Shape Morphology Self-assembling Amphipilic copolymers Peptides Manufacturing methods 


  1. Aichmayer B, Wiedemann-Bidlack FB, Gilow C, Simmer JP, Yamakoshi Y, Emmerling F, Margolis HC, Fratzl P (2010) Amelogenin nanoparticles in suspension: deviations from spherical shape and pH-dependent aggregation. Biomacromolecules 11:369–376CrossRefPubMedGoogle Scholar
  2. Bonde J, Bülow L (2014) In vitro preparation of amelogenin nanoparticles carrying nucleic acids. Biotechnol Lett 36(6):1349–1357CrossRefPubMedGoogle Scholar
  3. Cauchois O, Segura-Sanchez F, Ponchel G (2013) Molecular weight controls the elongation of oblate-shaped degradable poly(gamma-benzyl-L-glutamate) nanoparticles. Int J Pharm 452:292–299CrossRefPubMedGoogle Scholar
  4. Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 104(29):11901–11904CrossRefPubMedPubMedCentralGoogle Scholar
  5. de Miguel L, Popa I, Noiray M, Caudron E, Arpinati L, Desmaele D, Cebrián-Torrejón G, Doménech-Carbó A, Ponchel G (2015) Osteotropic polypeptide nanoparticles with dual hydroxyapatite binding properties and controlled cisplatin delivery. Pharm Res 32(5):1794–1803CrossRefPubMedGoogle Scholar
  6. Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27:5307–5314CrossRefPubMedGoogle Scholar
  7. Decuzzi P, Godin B, Tanaka T, Lee S-Y, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Rel 141(3):320–327CrossRefGoogle Scholar
  8. Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21:1–16CrossRefGoogle Scholar
  9. Dendukuri D, Tsoi K, HattonTA Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21:2113–2116CrossRefPubMedGoogle Scholar
  10. Deng R, Liang F, Qu X, Wang Q, Zhu J, Yang Z (2015a) Diblock copolymer based janus nanoparticles. Macromolecules 48:750–755CrossRefGoogle Scholar
  11. Deng R, Li H, Liang F, Zhu J, Li B, Xie X, Yang Z (2015b) Soft colloidal molecules with tunable geometry by 3D confined assembly of block copolymers. Macromolecules 48:5855–5860CrossRefGoogle Scholar
  12. Euliss LE, DuPont JA, Gratton S, DeSimone J (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35(11):1095–1104CrossRefPubMedGoogle Scholar
  13. Fornaguera C, Calderó G, Mitjans M, Vinardell MP, Solans C, Vauthier C (2015) Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies. Nanoscale 7(14):6045–6058CrossRefPubMedGoogle Scholar
  14. Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5:013403–013419CrossRefPubMedCentralGoogle Scholar
  15. Gu Z, Yang Z, Chong Y, Ge C, Weber JK, Bell DR, Zhou R (2015) Surface curvature relation to protein adsorption for carbon-based nanomaterials. Sci Rep 5:10886CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hao N, Li L, Tang F (2016) Shape matters when engineering mesoporous silica-based nanomedicines. Biomater Sci 4:575–591CrossRefPubMedGoogle Scholar
  17. Huang ZM, Zhang YZ, Kotakic M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRefGoogle Scholar
  18. Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of shape of mesoporous silic nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448CrossRefPubMedGoogle Scholar
  19. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568CrossRefGoogle Scholar
  20. Kai MP, Keeler AW, Perry JL, Reuter KG, Luft JC, O’Neal SK, Zamboni WC, DeSimone JM (2015) Evaluation of drug loading, pharmacokinetic behavior, and toxicity of a cisplatin-containing hydrogel nanoparticle. J Control Rel 204:70–77CrossRefGoogle Scholar
  21. Kleinstreuer C, Li J, Koo J (2008) Microfluidics of nano-drug delivery. Int J Heat Mass Transf 51:5590–5597CrossRefGoogle Scholar
  22. Li D, Xia Y (2004) Electrospinning of Nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRefGoogle Scholar
  23. Li Y, Kröger M, Liu WK (2015) Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale 7:16631–16646CrossRefPubMedGoogle Scholar
  24. Lim JM, Bertrand N, Valencia PM, Rhee M, Langer R, Jon S, Farokhzad OC, Karnik R (2014) Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomed Nanotechnol Biol Med 10:401–409CrossRefGoogle Scholar
  25. Lleo MM, Canepari P, Satta G (1990) Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rod-shaped mutants from some wild-type cocci. J Bacteriol 172:3758–3771CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985CrossRefPubMedGoogle Scholar
  27. Martinez Barbosa ME, Cammas-Marion S, Bouteiller L, Vauthier C, Ponchel G (2009) PEGylated degradable composite nanoparticles based on mixtures of PEG-beta-poly(gamma-benzyl L-glutamate) and poly(gamma-benzyl L-glutamate). Bioconjugate Chem 20(8):1490–1496CrossRefGoogle Scholar
  28. Müller K, Fedosov DA, Gompper G (2014) Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep 4:4871PubMedPubMedCentralGoogle Scholar
  29. Parakhonskiy B, Zyuzin M, Uashchenok A, Carregal-Romero S, Rejman J, Möhwald H, Parak WJ, Skirtach AG (2015) The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J Nanobiotechnol 13(53):1–13Google Scholar
  30. Peng B, Liu Y, Zhou Y, Yang L, Zhang G, Liu Y (2015) Modeling nanoparticle targeting to a vascular surface in shear flow through diffusive particle dynamics. Nanoscale Res Lett 10:235CrossRefPubMedCentralGoogle Scholar
  31. Pérez-Page M, Yua E, Li J, Rahman M, Drydena DM, Vidu R, Stroeve P (2016) Template-based syntheses for shape controlled nanostructures. Adv Colloid Interface Sci 234:51–79CrossRefPubMedGoogle Scholar
  32. Perry JL, Herlihy KP, Napier ME, Desimone JM (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44:990–998CrossRefPubMedPubMedCentralGoogle Scholar
  33. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, Napier M, Bear JE, DeSimone JM (2012) PEgylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 12:5304–5310CrossRefPubMedPubMedCentralGoogle Scholar
  34. Reches M, Gazit G (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1:195–200CrossRefPubMedGoogle Scholar
  35. Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127:10096–10100CrossRefPubMedGoogle Scholar
  36. Ruan Q, Moradian-Oldak J (2015) Amelogenin and enamel biomimetics. J Mater Chem B 3:3112–3129CrossRefGoogle Scholar
  37. Sabapathy M, Shelke Y, Basavaraj MG, Mani E (2016) Synthesis of non-spherical patchy particles at fluid–fluid interfaces via differential deformation and their self-assembly. Soft Matter 12:5950–5958CrossRefPubMedGoogle Scholar
  38. Scanlon S, Aggeli A (2008) Self-assemblying peptide nanotubes. Nanotoday 3(3–4):22–30Google Scholar
  39. Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M (2011) Multi-stage delivery nanoparticle systems for therapeutic applications. Biochim Biophys Acta 1810:317–329CrossRefPubMedGoogle Scholar
  40. Smart T, Lomas H, Massignani M, Flores-Merino MV, Ruiz Perez L, Battaglia G (2008) Block copolymers nanostructures. Nanotoday 3(3–4):38–46CrossRefGoogle Scholar
  41. Thompson AJ, Mastria EM, Eniola-Adefeso O (2013) The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 24:5863–5871CrossRefGoogle Scholar
  42. Van de Ven AL, Kim P, Haley O, Fakhoury JR, Adriani G, Schmulen J, Moloney P, Hussain F, Ferrari M, Liu X, Yun S-H, Decuzzi P (2012) Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Rel 158:148–155CrossRefGoogle Scholar
  43. Vauthier C, Persson B, Lindner P, Cabane B (2010) Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials 32(6):1646–1656CrossRefPubMedGoogle Scholar
  44. Williford J-M, Santos JL, Shyam R, Mao H-Q (2015) Shape control in engineering of polymeric nanoparticles for therapeutic delivery. Biomater Sci 3(7):894–907CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yoo JW, Mitragotri S (2010) Polymer particles that switch shape in response to a stimulus. Proc Natl Acad Sci USA 107(25):11205–11210CrossRefPubMedPubMedCentralGoogle Scholar
  46. Young KD (2003) Bacterial shape. Mol Microbiol 49:571–580CrossRefPubMedGoogle Scholar
  47. Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660–703CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang Y, Huang ZM, Xu X, Lim CT, Ramakrishna S (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16(18):3406–3409CrossRefGoogle Scholar
  49. Zong X, Kim K, Fang D, Rana S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut Galien Paris Sud, Faculty of PharmacyCNRS, Univ. of Paris-Sud, University Paris SaclayChâtenay-MalabryFrance

Personalised recommendations