Preparation of Polymer Nanoparticles by the Emulsification-Solvent Evaporation Method: From Vanderhoff’s Pioneer Approach to Recent Adaptations

  • Néstor Mendoza-Muñoz
  • Sergio Alcalá-Alcalá
  • David Quintanar-GuerreroEmail author


This chapter provides an overview up to date of the emulsification-solvent evaporation method to prepare polymer nanoparticles for pharmaceutical researchers and formulators. It highlights the recent technological advances, assessment, and new modalities of this method (e.g., double-emulsion and emulsification-solvent displacement). The aim of this chapter is to review representative works and discuss the raw materials, preparative variables, conditions, formation mechanisms, etc., in order to make them useful for specific developments of drug nanoparticles. The considerable progress which has been made in the Van de Hoff's method will be reviewed with examples and applications to show its effectiveness, versatility, advantages, and limitations. Finally, the chapter is written in such way that the reader obtains enough criteria involved in the process to facilitate the formulation task.


Polymer nanoparticles Drug delivery systems Solvent evaporation Single emulsion Double emulsion 


  1. Anton N, Benoit J-P, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Controlled Release 128(3):185–199CrossRefGoogle Scholar
  2. Babak VG, Baros F, Boulanouar O, Boury F, Fromm M, Kildeeva NR, Ubrich N, Maincent P (2007) Impact of bulk and surface properties of some biocompatible hydrophobic polymers on the stability of methylene chloride-in-water mini-emulsions used to prepare nanoparticles by emulsification-solvent evaporation. Colloids Surf B 59(2):194–207CrossRefGoogle Scholar
  3. Bala I, Hariharan S (2004) Ravi Kumar MNV. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21(5):387PubMedCrossRefGoogle Scholar
  4. Behrend O, Ax K, Schubert H (2000) Influence of continuous phase viscosity on emulsification by ultrasound. Ultrason Sonochem 7(2):77–85PubMedCrossRefGoogle Scholar
  5. Bilati U, Allémann E, Doelker E (2003) Sonication parameters for the preparation of biodegradable nanocapsules of controlled size by the double emulsion method. Pharm Dev Technol 8(1):1–9PubMedCrossRefGoogle Scholar
  6. Bilati U, Allémann E, Doelker E (2005) Poly(D,L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method-processing and formulation issues for enhanced entrapment efficiency. J Microencapsul 22(2):205–214PubMedCrossRefGoogle Scholar
  7. Birnbaum D, Kosmala J, Brannon-Peppas L (2000) Optimization of preparation techniques for poly(lactic acid-co-glycolic acid) nanoparticles. J Nanopart Res 2(2):173–181CrossRefGoogle Scholar
  8. Bodmeier R, Chen H (1990) Indomethacin polymeric nanosuspensions prepared by microfluidization. J Controlled Release 12:223–233CrossRefGoogle Scholar
  9. Bohlender C, Landfester K, Crespy D, Schiller A (2013) Unconventional non-aqueous emulsions for the encapsulation of a phototriggerable NO-nonor complex in polymer nanoparticles. Part Part Syst Charact 30(2):138–142CrossRefGoogle Scholar
  10. Calderó G, García-Celma MJ, Solans C (2001) Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. J Colloid Interface Sci 353(2):406–411CrossRefGoogle Scholar
  11. Chacón M, Berges L, Molpeceres J, Aberturas MR, Guzmán M (1996) Optimized preparation of poly d, l (lactic-glycolic) microspheres and nanoparticles for oral administration. Int J Pharm 141(1–2):81–91CrossRefGoogle Scholar
  12. Chernysheva YV, Babak VG, Kildeeva NR, Boury F, Benoit JP, Ubrich N, Maincent P (2003) Effect of the type of hydrophobic polymers on the size of nanoparticles obtained by emulsification–solvent evaporation. Mendeleev Commun 13(2):65–67CrossRefGoogle Scholar
  13. Chung BH, Lim YT, HAN JH (2011) Polymer particles for NIR/MR bimodal molecular imaging and method for preparing the same. WO2009028825A2Google Scholar
  14. Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Controlled Release 133:90–95CrossRefGoogle Scholar
  15. Conti B, Genta I, Modena T, Pavanetto F (1995) Investigation on process parameters involved in polylactide-co-glycolide microspheres preparation. Drug Dev Ind Pharm 21(5):615–622CrossRefGoogle Scholar
  16. Cucheval A, Chow RCY (2008) A study on the emulsification of oil by power ultrasound. Ultrason Sonochem 15(5):916–920PubMedCrossRefGoogle Scholar
  17. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical application. J Controlled Release 161:505–522CrossRefGoogle Scholar
  18. Desgouilles S, Vauthier C, Bazile D, Vacus J, Grossiord J-L, Veillard M, Couvreur P (2003) The design of nanoparticles obtained by solvent evaporation: a comprehensive study. Langmuir 19(22):9504–9510CrossRefGoogle Scholar
  19. Domínguez-Delgado CL, Rodríguez-Cruz IM, Escobar-Chávez JJ, Calderón-Lojero IO, Quintanar-Guerrero D, Ganem A (2011) Preparation and characterization of triclosan nanoparticles intended to be used for the treatment of acne. Eur J Pharm Biopharm 71:102–110CrossRefGoogle Scholar
  20. Dunne M, Corrigan I, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21(16):1659–1668PubMedCrossRefGoogle Scholar
  21. Fan TM, Guang HM, Wei Q, Zhi GS (2003) W/O/W double emulsion technique using ethyl acetate as organic solvent: effects of its diffusion rate on the characteristics of microparticles. J Controlled Release 91:407–416CrossRefGoogle Scholar
  22. Feng SS (2006) Nanoparticle coating for drug delivery. US20060188543Google Scholar
  23. Freudig B, Tesch S, Schubert H (2013) Production of emulsions in high-pressure homogenizers—part II: influence of cavitation on droplet breakup. Eng Life Sci 3(6):266–270CrossRefGoogle Scholar
  24. Gaikwad SG, Pandit AB (2008) Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrason Sonochem 15(4):554–563PubMedCrossRefGoogle Scholar
  25. Galindo-Rodriguez S, Allémann E, Fessi H, Doelker E (2004) Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res 21(8):1428–1439PubMedCrossRefGoogle Scholar
  26. Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H (2005) Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 25(4–5):357–367PubMedCrossRefGoogle Scholar
  27. Gonsalves KE, Bosse MJ, Ellington JK, Hudson MC, Horton JM (2011) Biodegradable therapeutic nanoparticles containing an antimicrobial agent. US20110218140A1Google Scholar
  28. Grandfils C, Jerome R, Nihant N, Teyssie P (1997) Biocompatible and biodegradable nanoparticles designed for proteinaceous drugs absorption and delivery. WO1997002022A1Google Scholar
  29. Gurny R, Peppas NA, Harrington DD, Banker G (1981) Development of biodegradable and injectable lattices for controlled release of potent drugs. Drug Dev Ind Pharm 7:1–25CrossRefGoogle Scholar
  30. Han E-J, Chung A-H, Oh I-J (2012) Analysis of residual solvents in poly(lactide-co-glycolide) nanoparticles. J Pharm Investig 42(5):251–256CrossRefGoogle Scholar
  31. Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327CrossRefGoogle Scholar
  32. Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 20(3):611–615CrossRefGoogle Scholar
  33. Hielscher T (2005) Ultrasonic production of nano-size dispersions and emulsions. In: Proceedings of European nanosystems conference ENS’05Google Scholar
  34. Hildgen P, Panoyan A, Lacasse FX, Quesnel R, Rizkalla N (2006) Stealthy polymeric biodegradable nanospheres and uses thereof. US20060165987A1Google Scholar
  35. Hirenkumar KM, Steven JS (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 3:1377–1397CrossRefGoogle Scholar
  36. Jaiswal J, Gupta SK, Kreuter J (2004) Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J Controlled Release 96(1):169–178CrossRefGoogle Scholar
  37. Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L (2008) The use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol 9(2):170–175CrossRefGoogle Scholar
  38. Klee D, Hilgers C (2007) E-PTFE foil impregnated with an encapsulated bioactive substance. US20070098757A1Google Scholar
  39. Kreuter J, Gelperina S, Maksimenko O, Khalanskiy A (2011) Polylactide nanoparticles. US8003128B2Google Scholar
  40. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75(1):1–18CrossRefGoogle Scholar
  41. Labhasetwar VD, Sahoo SK (2010) Transferrin-conjugated nanoparticles for increasing efficacy of a therapeutic agent. US20100015051A1Google Scholar
  42. Lamprecht A, Ubrich N, Pérez MH, Lehr CM, Hoffman M, Maincent P (1999) Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm 184(1):97–105PubMedCrossRefGoogle Scholar
  43. Landry FB, Bazile DV, Spenlehauer G, Veillard M, Kreuter J (1996) Influence of coating agents on the degradation of poly(d,l-lactic acid) nanoparticles in model digestive fluids (USP XXII). STP Pharma Sci 6:195–202Google Scholar
  44. Lemoine D, Preat V (1998) Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J Controlled Release 54:15–27CrossRefGoogle Scholar
  45. Lemos-Senna E, Wouessidjewe D, Lesieur S, Duchêne D (1998) Preparation of amphiphilic cyclodextrin nanospheres using the emulsification solvent evaporation method. Influence of the surfactant on preparation and hydrophobic drug loading. Int J Pharm 170(1):119–128CrossRefGoogle Scholar
  46. Li WI, Anderson KW, Mehta RC, Deluca PP (1995a) Prediction of solvent removal profile and effect on properties for peptide-loaded PLGA microspheres prepared by solvent extraction/evaporation method. J Controlled Release 37(3):199–214CrossRefGoogle Scholar
  47. Li WI, Anderson KW, DeLuca PP (1995b) Kinetic and thermodynamic modeling of the formation of polymeric microspheres using solvent extraction/evaporation method. J Controlled Release. 37(3):187–198CrossRefGoogle Scholar
  48. Maa Y-F, Hsu C (1996) Liquid-liquid emulsification by rotor/stator homogenization. J Controlled Release 38(2–3):219–228. doi: 10.1016/0168-3659(95)00123-9 CrossRefGoogle Scholar
  49. Mainardes RM, Evangelista RC (2005) PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm 290(1–2):137–144PubMedCrossRefGoogle Scholar
  50. Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T (2007) Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 334:137–148PubMedCrossRefGoogle Scholar
  51. Miller WK (2010) Nanoparticles comprising drug, a non-ionizable cellulosic polymer and tocopheryl polyethylene glycol succinate. US20100183731A1Google Scholar
  52. Molpeceres J, Guzman M, Aberturas MR, Chacon M, Berges L (1996) Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci 85(2):206–213. doi: 10.1021/js950164r PubMedCrossRefGoogle Scholar
  53. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142PubMedCrossRefGoogle Scholar
  54. Mu L, Feng SS (2003) A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Controlled Release 86(1):33–48CrossRefGoogle Scholar
  55. Musyanovych A, Schmitz-Wienke J, Mailander V, Walther P, Landfester K (2008) Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol Biosci 8:127–139PubMedCrossRefGoogle Scholar
  56. Nagavarma BVN, Hemant KSY, Ayaz A, Vasudha LS, Shivakumar HG (2012) Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res 5(3):16–23Google Scholar
  57. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798CrossRefGoogle Scholar
  58. Nava-Arzaluz MG, Piñón-Segundo E, Ganem-Rondero A, Lechuga-Ballesteros D (2012) Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Pat Drug Deliv Formul 6(3):209–223PubMedCrossRefGoogle Scholar
  59. Noriega-Peláez EK, Mendoza-Muñoz N, Ganem-Quintanar A, Quintanar-Guerrero D (2011) Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles. Drug Dev Ind Pharm 37:160–166PubMedCrossRefGoogle Scholar
  60. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL et al (2003) Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Controlled Release 92(1–2):173–187CrossRefGoogle Scholar
  61. Piñón-Segundo E, Ganem-Quintanar A, Garibay-Bermudez R, Escobar-Chávez J, López-Cervantes M, Quintanar-Guerrero D (2006) Preparation of nanoparticles by solvent displacement using a novel recirculation system. Pharm Dev Technol 11(4):493–501PubMedCrossRefGoogle Scholar
  62. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2(1):8–21CrossRefGoogle Scholar
  63. Prabha S, Zhou W-Z, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection studies with fractionated nanoparticles. Int J Pharm 244:105–115PubMedCrossRefGoogle Scholar
  64. Quellec P, Gref R, Dellacherie E, Sommer F, Tran MD, Alonso MJ (1999) Protein encapsulation within poly(ethylene glycol)-coated nanospheres. II. Controlled release properties. J Biomed Mater Res Part A 47:388–395CrossRefGoogle Scholar
  65. Quintanar D, Fessi H, Doelker E, Gurny R, Alléman E (1999) Method for producing an aqueous colloidal dispersión of nanoparticles. PCT/EP 99/04677Google Scholar
  66. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1998a) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24(12):1113–1128PubMedCrossRefGoogle Scholar
  67. Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H (1998b) Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res 15(7):1056–1062PubMedCrossRefGoogle Scholar
  68. Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1999) Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int J Pharm 188(2):155–164PubMedCrossRefGoogle Scholar
  69. Rajeev A (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490CrossRefGoogle Scholar
  70. Ranjan AP, Mukerjee A, Helson L, Vishwanatha JK (2012) Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. J Nanobiotechnol 10:38CrossRefGoogle Scholar
  71. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913CrossRefGoogle Scholar
  72. Rodríguez-Cruz IM, Merino V, Merino M, Diez O, Nácher A, Quintanar-Guerrero D (2013) Polymeric nanospheres as strategy to increase the amount of triclosan retained in the skin: passive diffusion vs. iontophoresis. J Microencapsul 30:72–80PubMedCrossRefGoogle Scholar
  73. Sanchez A, Vila-Jato J, Alonso MJ (1993) Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporin A. Int J Pharm 99(2–3):263–273CrossRefGoogle Scholar
  74. Sawalha H, Purwanti N, Rinzema A, Schroën K, Boom R (2008) Polylactide microspheres prepared by premix membrane emulsification—effects of solvent removal rate. J Membr Sci 310(1–2):484–493CrossRefGoogle Scholar
  75. Shinoda K, Saito H (1968) The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. J Colloid Interface Sci 26(1):70–74CrossRefGoogle Scholar
  76. Shinoda K, Sation H (1969) The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. J Colloid Interface Sci 30(2):258–263. doi: 10.1016/S0021-9797(69)80012-3 CrossRefGoogle Scholar
  77. Solè I, Pey CM, Maestro A, González C, Porras M, Solans C, Gutiérrez JM (2010) Nano-emulsions prepared by the phase inversion composition method: preparation variables and scale up. J Colloid Interface Sci 344(2):417–423PubMedCrossRefGoogle Scholar
  78. Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, Levy RJ (1997) Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Controlled Release 43:197CrossRefGoogle Scholar
  79. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Controlled Release 70:1–20CrossRefGoogle Scholar
  80. Staff RH, Lieberwirth I, Landfester K, Crespy D (2012) Preparation and characterization of anisotropic submicron particles from semicrystalline polymers. Macromol Chem Phys 213(3):351–358CrossRefGoogle Scholar
  81. Staff RH, Schaeffel D, Turshatov A, Donadio D, Butt H-J, Landfester K, Koynov K, Crespy D (2013a) Particle formation in the emulsion-solvent evaporation process. Small 9(20):3514–3522PubMedCrossRefGoogle Scholar
  82. Staff R, Landfester K, Crespy D (2013b) Recent advances in the emulsion solvent evaporation technique for the preparation of nanoparticles and nanocapsules. In: Advances in polymer science, vol 201. Springer, Berlin Heidelberg. pp 1–16Google Scholar
  83. Stang M, Schuchmann H, Schubert H (2006) Emulsification in high-pressure homogenizers. Eng Life Sci 1(4):151–157CrossRefGoogle Scholar
  84. Sung HW, Hsu HK, Tu H (2007) Nanoparticles for targeting hepatoma cells. US7304045B2Google Scholar
  85. Tewes F, Munnier E, Antoon B, Okassa LN, Cohen-Jonathan S, Marchais H, Douziech-Eyrolles L, Soucé M, Dubois P, Chourpa I (2007) Comparative study of doxorubicin-loaded poly (lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Eur J Pharm Biopharm 66(3):488–492PubMedCrossRefGoogle Scholar
  86. Thioune O, Fessi H, Devissaguet JP, Puisieux F (1997) Preparation of pseudolatex by nanoprecipitation: influence of the solvent nature on intrinsic viscosity and interaction constant. Int J Pharm 146(2):233–238CrossRefGoogle Scholar
  87. Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15:270–275PubMedCrossRefGoogle Scholar
  88. Ueda M, Kreuter J (1997) Optimization of the preparation of loperamide-loaded poly (L-lactide) nanoparticles by high pressure emulsification-solvent evaporation. J Microencapsul 14(5):593–605PubMedCrossRefGoogle Scholar
  89. Ueda M, Iwara A, Kreuter J (1998) Influence of the preparation methods on the drug release behavior of loperamide-loaded nanoparticles. J Microencapsul 15:361–372PubMedCrossRefGoogle Scholar
  90. Urban K, Wagner G, Schaffner D, Röglin D, Ulrich J (2006) Rotor-stator and disc systems for emulsification processes. Chem Eng Technol 29(1):24–31CrossRefGoogle Scholar
  91. Van de Ven H, Vandervoort J, Weyenberg W, Apers S, Ludwig A (2011) Mixture designs in the optimisation of PLGA nanoparticles: influence of organic phase composition on beta-aescin encapsulation. J Microencapsul 29(2):115–125PubMedGoogle Scholar
  92. Vanderhoff JW, El-Aasser MS, Ugelstad J (1979) Polymeric emulsification process. US4177177Google Scholar
  93. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26(5):1025–1058PubMedCrossRefGoogle Scholar
  94. Vauthier C, Bouchemal K (2011) Processing and scale-up of polymeric nanoparticles. Intracell Deliv Fundam Biomed Technol Intracell Deliv 5:433–456CrossRefGoogle Scholar
  95. Wheatley MA, Lewandowski J (2010) Nano-sized ultrasound contrast agent: salting-out method. Mol Imaging 9(2):96–107PubMedGoogle Scholar
  96. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRefGoogle Scholar
  97. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, Labrude P, Vigneron C (1998a) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Controlled Release 50(1–3):31–40CrossRefGoogle Scholar
  98. Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C (1999) MPEOPLA nanoparticles: effect of MPEO content on some of their surface properties. J Biomed Mater Res Part A 44:109–115CrossRefGoogle Scholar
  99. Zweers MLT, Grijpma DW, Engbers GHM, Feijen J (2003) The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. J Biomed Mater Res B Appl Biomater 66B(2):559–566CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Néstor Mendoza-Muñoz
    • 1
  • Sergio Alcalá-Alcalá
    • 2
  • David Quintanar-Guerrero
    • 2
    Email author
  1. 1.Laboratorio de Farmacia, Facultad de Ciencias QuímicasUniversidad de ColimaCoquimatlánMexico
  2. 2.Laboratorio de Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores CuautitlánUniversidad Nacional Autónoma de MéxicoCuautitlán IzcalliMexico

Personalised recommendations