Skip to main content

Theranostics: In Vivo

  • Chapter
  • First Online:
Polymer Nanoparticles for Nanomedicines

Abstract

Theranostics is a portmanteau of thera(py) and (diag)nostics. It is an interdisciplinary field of research that unites pharmaceutical technology, chemistry, imaging, and medicine with the purpose of creating a single drug delivery system able to diagnose, treat, and monitor disease. In this chapter, the reader will be presented with an overview of the state-of-the-art developments in theranostics in which clinically relevant imaging modalities are combined with polymers, lipid-based systems, inorganic assemblies, antibody conjugates, and gene delivery vehicles. Here, special emphasis will be placed on the systems tested in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accardo A, Tesauro D, Morelli G (2013) Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polym J 45(5):481–493

    Article  CAS  Google Scholar 

  • Adams KE, Ke S, Kwon S, Liang F, Fan Z, Lu Y et al (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12(2):024017

    Article  PubMed  CAS  Google Scholar 

  • Agulla J, Brea D, Campos F, Sobrino T, Argibay B, Al-Soufi W et al (2014a) In vivo theranostics at the peri-infarct region in cerebral ischemia. Theranostics 4(1):90–105

    Article  CAS  Google Scholar 

  • Agulla J, Brea D, Argibay B, Novo M, Campos F, Sobrino T et al (2014b) Quick adjustment of imaging tracer payload, for in vivo applications of theranostic nanostructures in the brain. Nanomed Nanotechnol Biol Med 10(4):851–858

    Article  CAS  Google Scholar 

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60(23):6641–6648

    CAS  PubMed  Google Scholar 

  • Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE et al (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22(5):825–858

    Article  CAS  PubMed  Google Scholar 

  • Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Aryal S, Hu CM, Zhang L (2011) Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm 8(4):1401–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23(21):4591–4601

    Article  CAS  PubMed  Google Scholar 

  • Bardhan R, Chen WX, Perez-Torres C, Bartels M, Huschka RM, Zhao LL et al (2009) Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv Funct Mater 19(24):3901–3909

    Article  CAS  Google Scholar 

  • Bardhan R, Chen WX, Bartels M, Perez-Torres C, Botero MF, McAninch RW et al (2010) Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett 10(12):4920–4928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beer AJ, Schwaiger M (2008) Imaging of integrin alpha v beta 3 expression. Cancer Metastasis Rev 27(4):631–644

    Article  CAS  PubMed  Google Scholar 

  • Blanco E, Kessinger CW, Sumer BD, Gao J (2009) Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med 234(2):123–131

    Article  CAS  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  CAS  PubMed  Google Scholar 

  • Bussolati B, Grange C, Bruno S, Buttiglieri S, Deregibus MC, Tei L et al (2006) Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Exp Cell Res 312(6):913–924

    Article  CAS  PubMed  Google Scholar 

  • Cai XP, Hu JJ, Xiao JR, Cheng YY (2013) Dendrimer and cancer: a patent review (2006–present). Expert Opin Ther Pat 23(4):515–529

    Article  CAS  PubMed  Google Scholar 

  • Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35(6):512–523

    Article  CAS  PubMed  Google Scholar 

  • Charan S, Sanjiv K, Singh N, Chien FC, Chen YF, Nergui NN et al (2012) Development of chitosan oligosaccharide-modified gold nanorods for in vivo targeted delivery and noninvasive imaging by NIR irradiation. Bioconjug Chem 23(11):2173–2182

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Hou YP, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I et al (2004) Pegylated Arg-Gly-Asp peptide: Cu-64 labeling and PET imaging of brain tumor alpha(v)beta(3)-integrin expression. J Nucl Med 45(10):1776–1783

    CAS  PubMed  Google Scholar 

  • Chen JY, Yang MX, Zhang QA, Cho EC, Cobley CM, Kim C et al (2010) Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications. Adv Funct Mater 20(21):3684–3694

    Article  CAS  Google Scholar 

  • Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Yang K, Chen Q, Liu Z (2012) Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal of cancer. ACS Nano 6(6):5605–5613

    Article  CAS  PubMed  Google Scholar 

  • Choe R, Konecky SD, Corlu A, Lee K, Durduran T, Busch DR et al (2009) Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography. J Biomed Opt 14(2):024020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi KY, Liu G, Lee S, Chen X (2012) Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4(2):330–342

    Article  CAS  PubMed  Google Scholar 

  • Cochran MC, Eisenbrey J, Ouma RO, Soulen M, Wheatley MA (2011) Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 414(1–2):161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522

    Article  CAS  Google Scholar 

  • Davies GL, Kramberger I, Davis JJ (2013) Environmentally responsive MRI contrast agents. Chem Commun 49(84):9704–9721

    Article  CAS  Google Scholar 

  • de Smet M, Langereis S, van den Bosch S, Grull H (2010) Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release 143(1):120–127

    Article  PubMed  CAS  Google Scholar 

  • de Smet M, Heijman E, Langereis S, Hijnen NM, Grull H (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150(1):102–110

    Article  CAS  Google Scholar 

  • Deckers R, Moonen CTW (2010) Ultrasound triggered, image guided, local drug delivery. J Control Release 148(1):25–33

    Article  CAS  Google Scholar 

  • Delli Castelli D, Dastru W, Terreno E, Cittadino E, Mainini F, Torres E et al (2010) In vivo MRI multicontrast kinetic analysis of the uptake and intracellular trafficking of paramagnetically labeled liposomes. J Control Release 144(3):271–279

    Article  CAS  Google Scholar 

  • Devi GR (2006) siRNA-based approaches in cancer therapy. Cancer Gene Ther 13(9):819–829

    Article  CAS  PubMed  Google Scholar 

  • Dijkmans PA, Juffermans LJ, Musters RJ, van Wamel A, ten Cate FJ, van Gilst W et al (2004) Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr 5(4):245–256

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360

    Article  CAS  PubMed  Google Scholar 

  • Eisenbrey JR, Huang P, Hsu J, Wheatley MA (2009) Ultrasound triggered cell death in vitro with doxorubicin loaded poly lactic-acid contrast agents. Ultrasonics 49(8):628–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenbrey JR, Soulen MC, Wheatley MA (2010a) Delivery of encapsulated Doxorubicin by ultrasound-mediated size reduction of drug-loaded polymer contrast agents. IEEE Trans Bio Med Eng 57(1):24–28

    Article  CAS  Google Scholar 

  • Eisenbrey JR, Burstein OM, Kambhampati R, Forsberg F, Liu JB, Wheatley MA (2010b) Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. J Control Release 143(1):38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleuren EDG, Versleijen-Jonkers YMH, Heskamp S, van Herpena CML, Oyen WJG, van der Graaf WTA, Boerman OC (2014) Theranostic applications of antibodies in oncology. Mol Oncol 8:799–812

    Article  CAS  PubMed  Google Scholar 

  • Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26(24):4012–4021

    Article  PubMed  PubMed Central  Google Scholar 

  • Furgeson DY, Dreher MR, Chilkoti A (2006) Structural optimization of a “smart” doxorubicin-polypeptide conjugate for thermally targeted delivery to solid tumors. J Control Release 110(2):362–369

    Article  CAS  Google Scholar 

  • Gabriel D, Busso N, So A, van den Bergh H, Gurny R, Lange N (2009) Thrombin-sensitive photodynamic agents: a novel strategy for selective synovectomy in rheumatoid arthritis. J Control Release 138(3):225–234

    Article  CAS  PubMed  Google Scholar 

  • Gabriel D, Zuluaga MF, van den Bergh H, Gurny R, Lange N (2011) It is all about proteases: from drug delivery to in vivo imaging and photomedicine. Curr Med Chem 18(12):1785–1805

    Article  CAS  PubMed  Google Scholar 

  • Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204

    Article  CAS  PubMed  Google Scholar 

  • Gao FP, Lin YX, Li LL, Liu Y, Mayerhoffer U, Spenst P et al (2014) Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials 35(3):1004–1014

    Article  CAS  PubMed  Google Scholar 

  • Geninatti Crich S, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S et al (2006) Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 66(18):9196–9201

    Article  CAS  PubMed  Google Scholar 

  • Grange C, Geninatti-Crich S, Esposito G, Alberti D, Tei L, Bussolati B et al (2010) Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res 70(6):2180–2190

    Article  CAS  PubMed  Google Scholar 

  • Hagendoorn J, Tong R, Fukumura D, Lin Q, Lobo J, Padera TP et al (2006) Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res 66(7):3360–3364

    Article  CAS  PubMed  Google Scholar 

  • Haglund E, Seale-Goldsmith MM, Leary JF (2009) Design of multifunctional nanomedical systems. Ann Biomed Eng 37(10):2048–2063

    Article  CAS  PubMed  Google Scholar 

  • Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221

    Article  CAS  PubMed  Google Scholar 

  • Harris TJ, von Maltzahn G, Lord ME, Park JH, Agrawal A, Min DH et al (2008) Protease-triggered unveiling of bioactive nanoparticles. Small 4(9):1307–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab 5(4):403–416

    Article  CAS  Google Scholar 

  • Heath CH, Deep NL, Sweeny L, Zinn KR, Rosenthal EL (2012) Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Ann Surg Oncol 19(12):3879–3887

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoste K, De Winne K, Schacht E (2004) Polymeric prodrugs. Int J Pharm 277(1–2):119–131

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Otis J, Joice M, Kotlyar A, Thomas TP (2014) PSMA-targeted stably linked “dendrimer-glutamate urea-methotrexate” as a prostate cancer therapeutic. Biomacromolecules 15(3):915–923

    Article  CAS  PubMed  Google Scholar 

  • Huynh E, Jin CS, Wilson BC, Zheng G (2014) Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 25(4):796–801

    Article  CAS  PubMed  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818

    Article  CAS  PubMed  Google Scholar 

  • Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5(2):1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62(11):1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaida S, Cabral H, Kumagai M, Kishimura A, Terada Y, Sekino M et al (2010) Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Res 70(18):7031–7041

    Article  CAS  PubMed  Google Scholar 

  • Keereweer S, Kerrebijn JD, van Driel PB, Xie B, Kaijzel EL, Snoeks TJ et al (2011) Optical image-guided surgery—where do we stand? Mol Imaging Biol: MIB 13(2):199–207

    Article  PubMed  Google Scholar 

  • Keereweer S, Van Driel PB, Snoeks TJ, Kerrebijn JD, Baatenburg de Jong RJ, Vahrmeijer AL et al (2013) Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 19(14):3745–3754

    Article  PubMed  Google Scholar 

  • Kenny GD, Kamaly N, Kalber TL, Brody LP, Sahuri M, Shamsaei E et al (2011) Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo. J Control Release 149(2):111–116

    Article  CAS  Google Scholar 

  • Khandare J, Minko T (2006) Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 31(4):359–397

    Article  CAS  Google Scholar 

  • Khlebtsov NG (2008) Optics and biophotonics of nanoparticles with a plasmon resonance. Quantum Electron 38(6):504–529

    Article  CAS  Google Scholar 

  • Khlebtsov N, Bogatyrev V, Dykman L, Khlebtsov B, Staroverov S, Shirokov A et al (2013) Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 3(3):167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 53(3):345–348

    Article  CAS  PubMed  Google Scholar 

  • Klajnert B, Rozanek M, Bryszewska M (2012) Dendrimers in photodynamic therapy. Curr Med Chem 19(29):4903–4912

    Article  CAS  PubMed  Google Scholar 

  • Konecky SD, Mazhar A, Cuccia D, Durkin AJ, Schotland JC, Tromberg BJ (2009) Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light. Opt Express 17(17):14780–14790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60(16):4440–4445

    CAS  PubMed  Google Scholar 

  • Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61(7):3027–3032

    CAS  PubMed  Google Scholar 

  • Kopecek J, Kopeckova P (2010) HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 62(2):122–149

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5(3):169–181

    Article  CAS  PubMed  Google Scholar 

  • Lammers T, Hennink WE, Storm G (2008a) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99(3):392–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammers T, Subr V, Peschke P, Kuhnlein R, Hennink WE, Ulbrich K et al (2008b) Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br J Cancer 99(6):900–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE et al (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30(20):3466–3475

    Article  CAS  PubMed  Google Scholar 

  • Lange N (2003) Controlled drug delivery in photodynamic therapy and fluorescence-based diagnosis of cancer. In: Mycek M-A, Pogue BW (eds) Handbook of biomedical fluorescence. Marcel Ekker, New York, pp 563–635

    Google Scholar 

  • Langereis S, Geelen T, Grull H, Strijkers GJ, Nicolay K (2013) Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR Biomed 26(7):728–744

    Article  CAS  PubMed  Google Scholar 

  • Lee GY, Qian WP, Wang LY, Wang YA, Staley CA, Satpathy M et al (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7(3):2078–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leproux A, Durkin A, Compton M, Cerussi AE, Gratton E, Tromberg BJ (2013) Assessing tumor contrast in radiographically dense breast tissue using Diffuse Optical Spectroscopic Imaging (DOSI). Breast Cancer Res: BCR 15(5):R89

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XJ, Takeda K, Yuba E, Harada A, Kono K (2014) Preparation of PEG-modified PAMAM dendrimers having a gold nanorod core and their application to photothermal therapy. J Mater Chem B 2(26):4167–4176

    Article  CAS  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 60(15):1650–1662

    Article  CAS  PubMed  Google Scholar 

  • Louie AY (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk BT, Zhang L (2014) Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 21859–21873

    Google Scholar 

  • Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46(1–3):169–185

    Article  CAS  PubMed  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y et al (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91(10):1775–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy JR, Korngold E, Weissleder R, Jaffer FA (2010) A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 6(18):2041–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed 4:99–105

    Article  CAS  Google Scholar 

  • Mittra ES, Goris ML, Iagaru AH, Kardan A, Burton L, Berganos R et al (2011) Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging alpha(v)beta(3) integrin levels. Radiology 260(1):182–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Modery-Pawlowski CL, Gupta AS (2014) Heteromultivalent ligand-decoration for actively targeted nanomedicine. Biomaterials 35(9):2568–2579

    Article  CAS  PubMed  Google Scholar 

  • Mok H, Park TG (2012) Hybrid polymeric nanomaterials for siRNA delivery and imaging. Macromol Biosci 12:40–48

    Article  CAS  Google Scholar 

  • Moonen CT (2007) Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound. Clin Cancer Res 13(12):3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Mulder WJ, Griffioen AW, Strijkers GJ, Cormode DP, Nicolay K, Fayad ZA (2007) Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine 2(3):307–324

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64(13):1394–1416

    Article  CAS  PubMed  Google Scholar 

  • Muselaers CH, Stillebroer AB, Rijpkema M, Franssen GM, Oosterwijk E, Mulders PF et al (2014) Optical imaging of renal cell carcinoma with anti-carbonic anhydrase IX monoclonal antibody girentuximab. J Nucl Med 55(6):1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Needham D, Dewhirst MW (2001) The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 53(3):285–305

    Article  CAS  PubMed  Google Scholar 

  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW (2000) A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 60(5):1197–1201

    CAS  PubMed  Google Scholar 

  • Negussie AH, Yarmolenko PS, Partanen A, Ranjan A, Jacobs G, Woods D et al (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperth 27(2):140–155

    Article  CAS  Google Scholar 

  • Ng KK, Shakiba M, Huynh E, Weersink RA, Roxin A, Wilson BC et al (2014) Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano 8363–8373

    Google Scholar 

  • Nichols JW, Bae YH (2014) EPR: evidence and fallacy. J Control Release 451–464

    Google Scholar 

  • Nijssen A, Koljenovic S, Bakker Schut TC, Caspers PJ, Puppels GJ (2009) Towards oncological application of Raman spectroscopy. J Biophotonics 2(1–2):29–36

    Article  CAS  PubMed  Google Scholar 

  • Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee YK (2010) Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials 31(20):5436–5444

    Article  CAS  PubMed  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    Article  PubMed  CAS  Google Scholar 

  • Ornelas C, Pennell R, Liebes LF, Weck M (2011) Construction of a well-defined multifunctional dendrimer for theranostics. Org Lett 13(5):976–979

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan TD, Leproux A, Chen JH, Bahri S, Matlock A, Roblyer D et al (2013) Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy. Breast Cancer Res: BCR 15(1):R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  PubMed  Google Scholar 

  • Peng CL, Shih YH, Lee PC, Hsieh TM, Luo TY, Shieh MJ (2011) Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 5(7):5594–5607

    Article  CAS  PubMed  Google Scholar 

  • Petit B, Yan F, Tranquart F, Allemann E (2012a) Microbubbles and ultrasound-mediated thrombolysis: a review of recent in vitro studies. J Drug Deliv Sci Technol 22(5):381–392

    Article  CAS  Google Scholar 

  • Petit B, Gaud E, Colevret D, Arditi M, Yan F, Tranquart F et al (2012b) In vitro sonothrombolysis of human blood clots with BR38 microbubbles. Ultrasound Med Biol 38(7):1222–1233

    Article  PubMed  Google Scholar 

  • Ponce AM, Viglianti BL, Yu DH, Yarmolenko PS, Michelich CR, Woo J et al (2007) Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst 99(1):53–63

    Article  CAS  PubMed  Google Scholar 

  • Puri A, Blumenthal R (2011) Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res 44(10):1071–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan Q, Xie J, Gao H, Yang M, Zhang F, Liu G et al (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 8(5):1669–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29(3):193–207

    Article  PubMed  Google Scholar 

  • Ranjan A, Jacobs GC, Woods DL, Negussie AH, Partanen A, Yarmolenko PS et al (2012) Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 158(3):487–494

    Article  CAS  PubMed  Google Scholar 

  • Redy O, Shabat D (2012) Modular theranostic prodrug based on a FRET-activated self-immolative linker. J Control Release 164(3):276–282

    Article  CAS  Google Scholar 

  • Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 51:135–153

    Article  CAS  Google Scholar 

  • Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK et al (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69(4):1659–1667

    Article  CAS  PubMed  Google Scholar 

  • Sibani SA, McCarron PA, Woolfson AD, Donnelly RF (2008) Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms. Expert Opin Drug Deliv 5(11):1241–1254

    Article  CAS  PubMed  Google Scholar 

  • Stillebroer AB, Boerman OC, Desar IM, Boers-Sonderen MJ, van Herpen CM, Langenhuijsen JF et al (2013) Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur Urol 64(3):478–485

    Article  CAS  PubMed  Google Scholar 

  • Straathof R, Strijkers GJ, Nicolay K (2011) Target-specific paramagnetic and superparamagnetic micelles for molecular MR imaging. Methods Mol Biol 771:691–715

    Article  CAS  PubMed  Google Scholar 

  • Svenson S (2013) Theranostics: are we there yet? Mol Pharm 10(3):848–856

    Article  CAS  PubMed  Google Scholar 

  • Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH et al (2013) Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res 19(18):5182–5191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talelli M, Rijcken CJ, van Nostrum CF, Storm G, Hennink WE (2010) Micelles based on HPMA copolymers. Adv Drug Deliv Rev 62(2):231–239

    Article  CAS  PubMed  Google Scholar 

  • Taratula O, Schumann C, Naleway MA, Pang AJ, Chon KJ, Taratula O (2013) A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm 10(10):3946–3958

    Article  CAS  PubMed  Google Scholar 

  • Teesalu T, Sugahara KN, Ruoslahti E (2013) Tumor-penetrating peptides. Front Oncol 3:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K (2003) MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 226(3):897–905

    Article  PubMed  Google Scholar 

  • Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110(5):3019–3042

    Article  CAS  PubMed  Google Scholar 

  • Terreno E, Uggeri F, Aime S (2012) Image guided therapy: the advent of theranostic agents. J Control Release 161(2):328–337

    Article  CAS  Google Scholar 

  • Thorsen F, Fite B, Mahakian LM, Seo JW, Qin S, Harrison V et al (2013) Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases. J Control Release 172(3):812–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topete A, Alatorre-Meda M, Iglesias P, Villar-Alvarez EM, Barbosa S, Costoya JA et al (2014) Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 8(3):2725–2738

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci: CMLS 61(19–20):2549–2559

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA, Trubetskoy VS, Herron JN et al (1994) Poly(ethylene glycol) on the liposome surface-on the mechanism of polymer-coated liposome longevity. BBA Biomembr 1195(1):11–20

    Article  CAS  Google Scholar 

  • Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10(9):507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17(10):1315–1319

    Article  PubMed  CAS  Google Scholar 

  • van Driel PB, van der Vorst JR, Verbeek FP, Oliveira S, Snoeks TJ, Keereweer S et al (2014) Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer 134(11):2663–2673

    Article  CAS  PubMed  Google Scholar 

  • Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R et al (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res 5(1):83–94

    CAS  PubMed  Google Scholar 

  • Veronese FM, Schiavon O, Pasut G, Mendichi R, Andersson L, Tsirk A et al (2005) PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjug Chem 16(4):775–784

    Article  CAS  PubMed  Google Scholar 

  • Viglianti BL, Abraham SA, Michelich CR, Yarmolenko PS, MacFall JR, Bally MB et al (2004) In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med 51(6):1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Viglianti BL, Ponce AM, Michelich CR, Yu D, Abraham SA, Sanders L et al (2006) Chemodosimetry of in vivo tumor liposomal drug concentration using MRI. Magn Reson Med 56(5):1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Ravi S, Martinez GV, Chinnasamy V, Raulji P, Howell M et al (2012) Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 163(1):82–92

    Article  CAS  Google Scholar 

  • Wang CY, Ravi S, Garapati US, Das M, Howell M, Mallela J et al (2013) Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J Mater Chem B 1(35):4396–4405

    Article  CAS  Google Scholar 

  • Weinstein JN, Magin RL, Yatvin MB, Zaharko DS (1979) Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Science 204(4389):188–191

    Article  CAS  PubMed  Google Scholar 

  • Weishaupt D, Köchli VD, Marincek B (eds) (2006) How does MRI work? An introduction to the physics and function of magnetic resonance imaging. Springer, New York

    Google Scholar 

  • Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212(3):609–614

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Sun XR, Guo ZQ, Tang JB, Shen YQ, James TD et al (2014) In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J Am Chem Soc 136(9):3579–3588

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Lee S, Chen XY (2010) Nanoparticle-based theranostic agents. Adv Drug Deliver Rev. 62(11):1064–1079

    Article  CAS  Google Scholar 

  • Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202(4374):1290–1293

    Article  CAS  PubMed  Google Scholar 

  • Yavlovich A, Singh A, Blumenthal R, Puri A (2011) A novel class of photo-triggerable liposomes containing DPPC:DC(8,9)PC as vehicles for delivery of doxorubcin to cells. Biochim Biophys Acta 1808(1):117–126

    Article  CAS  PubMed  Google Scholar 

  • Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Edit 47(29):5362–5365

    Article  CAS  Google Scholar 

  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP et al (1995) Vascular-permeability in a human tumor xenograft—molecular-size dependence and cutoff size. Cancer Res 55(17):3752–3756

    CAS  PubMed  Google Scholar 

  • Zeisser-Labouebe M, Lange N, Gurny R, Delie F (2006) Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm 326(1–2):174–181

    Article  CAS  PubMed  Google Scholar 

  • Zeisser-Labouebe M, Delie F, Gurny R, Lange N (2009) Benefits of nanoencapsulation for the hypercin-mediated photodetection of ovarian micrometastases. Eur J Pharm Biopharm 71(2):207–213

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang J, Chen C (2013) Gold nanorods based platforms for light-mediated theranostics. Theranostics 3(3):223–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuluaga MF, Gabriel D, Lange N (2012) Enhanced prostate cancer targeting by modified protease sensitive photosensitizer prodrugs. Mol Pharm 9(6):1570–1579

    Article  CAS  PubMed  Google Scholar 

  • Zuluaga MF, Sekkat N, Gabriel D, van den Bergh H, Lange N (2013) Selective photodetection and photodynamic therapy for prostate cancer through targeting of proteolytic activity. Mol Cancer Ther 12(3):306–313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NL’s work is supported by the Grants Nos. 205320_138309, CR32I3_129987, CR32I3_147018, 31003A_149962, and CR32I3_150271 of the Swiss Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Allémann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herceg, V., Lange, N., Allémann, E. (2016). Theranostics: In Vivo. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_17

Download citation

Publish with us

Policies and ethics