Toxicological Aspects of Polymer Nanoparticles

  • Juan M. IracheEmail author
  • Nekane Martín-Arbella
  • Patricia Ojer
  • Amaya Azqueta
  • Adela Lopez de Cerain


This chapter describes the effects of some physico-chemical properties of polymer nanoparticles influencing the development of toxicological effects. More particularly, the effect of some parameters that may control the interaction of polymer nanoparticles with the biological environment (such as their composition, size, surface properties, and biodegradability) and, thus, be key factors of their efficacy and toxicity, is discussed. In addition, the chapter also reviews the toxicity results that have been found in the literature regarding the administration of polymer nanoparticles as delivery systems by different ways of administration including intravenous, oral, pulmonary, nasal, and ophthalmic routes.


Nanoparticles Toxicity Biodistribution Intravenous route Oral delivery Pulmonary delivery Nasal delivery Ocular delivery 



The authors wish to thank for support by the European Community´s Seventh Framework Programme via the large project “Alexander” (FP7-2011-NMP-280761).


  1. Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K (2013) Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA 110(43):17247–17252PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F (2010) Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomedicine 6(5):689–697PubMedGoogle Scholar
  4. Al-Hanbali O, Rutt KJ, Sarker DK, Hunter AC, Moghimi SM (2006) Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption. J Nanosci Nanotechnol 6(9–10):3126–3133PubMedCrossRefGoogle Scholar
  5. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 111(1–2):107–116PubMedCrossRefGoogle Scholar
  6. Antunes F, Andrade F, Araujo F, Ferreira D, Sarmento S (2013) Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm 83(3):427–435PubMedCrossRefGoogle Scholar
  7. Arbos P, Wirth M, Arangoa MA, Gabor F, Irache JM (2002) Gantrez® AN as a new polymer for the preparation of ligand–nanoparticle conjugates. J Control Release 83(3):321–330PubMedCrossRefGoogle Scholar
  8. Asgharian B, Price OT (2007) Deposition of ultrafine (nano)particles in the human lung. Inhal Toxicol. 19(13):1045–1054PubMedCrossRefGoogle Scholar
  9. Aydın RS (2013) Herceptin-decorated salinomycin-loaded nanoparticles for breast tumor targeting. J Biomed Mater Res A 101(5):1405–1415PubMedCrossRefGoogle Scholar
  10. Azami S, Roa WH, Lobenberg R (2008) Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 60(8):863–875CrossRefGoogle Scholar
  11. Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri SI (2013) Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci USA 110(9):3270–3275PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bennett WD (2002) Rapid translocation of nanoparticles from the lung to the bloodstream? Am J Respir Crit Care Med 165(12):1671–1672PubMedCrossRefGoogle Scholar
  13. Bertholon I, Vauthier C, Labarre D (2006) Complement activation by core-shell poly(isobutylcyanoacrylate)–polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm Res 23(6):1313–1323PubMedCrossRefGoogle Scholar
  14. Bhardwaj V, Ankola DD, Gupta SC, Schneider M, Lehr CM, Ravi Kumar MNV (2009) PLGA nanoparticles stabilized with cationic surfactant: safety studies and application in oral delivery of paclitaxel to treat chemical-induced breast cancer in rat. Pharm Res 26(11):2495–2503PubMedCrossRefGoogle Scholar
  15. Brown DM, Kanase N, Gaiser B, Johnston H, Stone V (2014) Inflammation and gene expression in the rat lung after instillation of silica nanoparticles: effect of size, dispersion medium and particle surface charge. Toxicol Lett 224(1):147–156PubMedCrossRefGoogle Scholar
  16. Brzoska M, Langer K, Coester C, Loitsch S, Wagner TOF, Mallinckrodt CV (2004) Incorporation of biodegradable nanoparticles into human airway epithelium cells—in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochem Biophys Res Commun 318(2):562–570PubMedCrossRefGoogle Scholar
  17. Calderon-Garciduenas L, Reed W, Maronpot RR, Henríquez-Roldán C, Delgado-Chavez R, Calderón-Garcidueñas A et al (2004) Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32(6):650–658PubMedCrossRefGoogle Scholar
  18. Campbell MK, Geis I (1995) Biochemistry. Saunders College Publishing, PhiladelphiaGoogle Scholar
  19. Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C et al (2005) Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26(1):133–140PubMedCrossRefGoogle Scholar
  20. Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdlec S, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37(6):659–685CrossRefGoogle Scholar
  21. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cenni E, Granchi D, Avnet S, Fotia C, Salerno M, Micieli D et al (2008) Biocompatibility of poly (d, l-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials 29(10):1400–1411PubMedCrossRefGoogle Scholar
  23. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K et al (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27(1):330–338PubMedCrossRefGoogle Scholar
  24. Chanan-Khan A, Szebeni J, Savay S, Liebes L, Rafique NM, Alving CR et al (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 14(9):1430–1437PubMedCrossRefGoogle Scholar
  25. Chauvierre C, Labarre D, Couvreur P, Vauthier C (2003) Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm Res 20(11):1786–1793PubMedCrossRefGoogle Scholar
  26. Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC et al (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20(13):2393–2395PubMedCrossRefGoogle Scholar
  27. Chen C, Cheng YC, Yu CH, Chan SW, Cheung MK, Yu PHF (2008) In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3-hydroxybutyrate)–poly(ethylene glycol)–poly(3-hydroxybutyrate) nanoparticles as potential drug carriers. J Biomed Mater Res A 87(2):290–298PubMedCrossRefGoogle Scholar
  28. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668PubMedCrossRefGoogle Scholar
  29. Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N et al (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28(12):1300–1303PubMedPubMedCentralCrossRefGoogle Scholar
  30. Contreras-Ruiz L, de la Fuente M, García-Vázquez C, Sáez V, Seijo B, Alonso MJ et al (2010) Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. Cornea 29(5):550–558PubMedCrossRefGoogle Scholar
  31. Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M et al (2006) Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol 215(1):100–108PubMedCrossRefGoogle Scholar
  32. das Neves J, Michiels J, Ariën KK, Vanham G, Amiji M, Bahia MF, Sarmento B (2012) Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine. Pharm Res 29(6):1468–1484PubMedCrossRefGoogle Scholar
  33. de Campos AM, Diebold Y, Carvalho ELS, Sánchez A, Alonso MJ (2004) Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 21(5):803–810PubMedCrossRefGoogle Scholar
  34. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149CrossRefGoogle Scholar
  35. De la Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49(5):2016–2024PubMedCrossRefGoogle Scholar
  36. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573PubMedCrossRefGoogle Scholar
  37. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478PubMedCrossRefGoogle Scholar
  38. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L et al (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15(2):213–220PubMedCrossRefGoogle Scholar
  39. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360PubMedCrossRefGoogle Scholar
  40. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J et al (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114(8):1172–1178PubMedPubMedCentralCrossRefGoogle Scholar
  41. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137PubMedCrossRefGoogle Scholar
  42. Enríquez de Salamanca A, Diebold Y, Calonge M, García-Vazquez C, Callejo S, Vila A et al (2006) Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci 47(4):1416–1425PubMedCrossRefGoogle Scholar
  43. Espuelas MS, Legrand P, Campanero MA, Appel M, Chéron M, Gamazo C et al (2003) Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemother 52(3):419–427PubMedCrossRefGoogle Scholar
  44. Fernandez-Urrusuno R, Fattal E, Porquet D, Feger J, Couvreur P (1995) Evaluation of liver toxicological effects induced by polyalkylcyanoacrylate nanoparticles. Toxicol Appl Pharmacol 130(2):272–279PubMedCrossRefGoogle Scholar
  45. Fernández-Urrusuno R, Fattal E, Féger J, Couvreur P, Thérond P (1997) Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles. Biomaterials 18(6):511–517PubMedCrossRefGoogle Scholar
  46. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171PubMedCrossRefGoogle Scholar
  47. Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18(6):565–571PubMedCrossRefGoogle Scholar
  48. Fischera D, Lib Y, Ahlemeyerc B, Krieglsteinc J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7):1121–1131CrossRefGoogle Scholar
  49. Forbes B, Ehrhardt C (2005) Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60(2):193–205PubMedCrossRefGoogle Scholar
  50. Frank M, Fries L (1991) The role of complement in inflammation and phagocytosis. Immunol Today 12(9):322–326PubMedCrossRefGoogle Scholar
  51. Gagliardini E, Conti S, Benigni A, Remuzzi G, Remuzzi A (2010) Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J Am Soc Nephrol 21(12):2081–2089PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gajbhiye V, Kumar PV, Tekade RK, Jain NK (2007) Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des 13:415–429CrossRefGoogle Scholar
  53. Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S (2006) Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27(18):3482–3490PubMedCrossRefGoogle Scholar
  55. Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicity: some physiological principles. Occup Med 56(5):307–311CrossRefGoogle Scholar
  56. Geiser M (2010) Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 23(4):207–217PubMedCrossRefGoogle Scholar
  57. Gill S, Löbenberg R, Ku T, Azarmi S, Roa W, Prenner EJ (2007) Nanoparticles: characteristics, mechanisms of action and toxicity in pulmonary drug delivery—a review. J Biomed Nanotechnol 3(2):107–119CrossRefGoogle Scholar
  58. Gott RC, Luo Y, Wang Q, Lamp WO (2014) Development of a biopolymer nanoparticle-based method of oral toxicity testing in aquatic invertebrates. Ecotoxicol Environ Saf 104:226–230PubMedCrossRefGoogle Scholar
  59. Grabowski N, Hillaireau H, Vergnaud J, Santiago LA, Kerdine-Romer S, Pallardy M et al (2013) Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells. Int J Pharm 454(2):686–694PubMedCrossRefGoogle Scholar
  60. Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM et al (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16(2–3):215–233PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hamad I, Hunter AC, Szebeni J, Moghimi SM (2008) Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol 46(2):225–232PubMedCrossRefGoogle Scholar
  62. Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM (2010) Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano 4(11):6629–6638PubMedCrossRefGoogle Scholar
  63. He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666PubMedCrossRefGoogle Scholar
  64. Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN (2012) Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomed 7:1851–1863CrossRefGoogle Scholar
  65. Huang M, Eugene Khor E, Lim LY (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21(2):344–353PubMedCrossRefGoogle Scholar
  66. Huong TM, Ishida T, Harashima H, Kiwada H (2001) The complement system enhances the clearance of phosphatidylserine (PS)-liposomes in rat and guinea pig. Int J Pharm 215(1–2):197–205PubMedCrossRefGoogle Scholar
  67. Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine 8(6):969–981PubMedPubMedCentralCrossRefGoogle Scholar
  68. Illum L, Davis SS, Muller RH, Mak E, West P (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a block copolymer-Poloxamine 908. Life Sci 40(4):367–374PubMedCrossRefGoogle Scholar
  69. Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S (2011) The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 32(2):503–515PubMedCrossRefGoogle Scholar
  70. Johnson RJ (2004) The complement system. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, Amsterdam, pp 318–328Google Scholar
  71. Kazimirova A, Magdolenova Z, Barancokova M, Staruchova M, Volkovova K, Dusinska M (2012) Genotoxicity testing of PLGA-PEO nanoparticles in TK6 cells by the comet assay and the cytokinesis-block micronucleus assay. Mutat Res 748(1–2):42–47PubMedCrossRefGoogle Scholar
  72. Keck CM, Muller RH (2013) Nanotoxicological classification system (NCS)—a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84(3):445–448PubMedCrossRefGoogle Scholar
  73. Kemper C, Atkinson JP, Hourcade DE (2010) Properdin: emerging roles of a pattern recognition molecule. Annu Rev Immunol 28:131–155PubMedCrossRefGoogle Scholar
  74. Kim KJ, Borok Z, Crandall ED (2001) A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm Res 18(3):253–255PubMedCrossRefGoogle Scholar
  75. Klesing J, Wiehe A, Gitter B, Grafe S, Epple M (2010) Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy. J Mater Sci Mater Med 21(3):887–892PubMedCrossRefGoogle Scholar
  76. Knopf PM, Rivera DS, Hai SH, McMurry J, Martin W, De Groot AS (2008) Novel function of complement C3d as an autologous helper T-cell target. Immunol Cell Biol 86(3):221–225PubMedCrossRefGoogle Scholar
  77. Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA (2013) Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 36:172–198PubMedPubMedCentralCrossRefGoogle Scholar
  78. Koziara JM, Oh JJ, Akers WS, Ferraris SP, Mumper RJ (2005) Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm Res 22(11):1821–1828PubMedCrossRefGoogle Scholar
  79. Kreyling WG, Semmler-Behnke M, Möller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562CrossRefGoogle Scholar
  80. Labarre D, Vauthier C, Chauvierre C, Petri B, Müller R, Chehimi MM (2005) Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26(24):5075–5084PubMedCrossRefGoogle Scholar
  81. Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663PubMedCrossRefGoogle Scholar
  82. Lee DW, Powers K, Baney R (2004) Physicochemical properties and blood compatibility of acylated chitosan nanoparticles. Carbohydr Polym 58(4):371–377CrossRefGoogle Scholar
  83. Lekshmi UM, Kishore N, Reddy PN (2011) Sub-acute toxicity assessment of glipizide engineered polymeric nanoparticles. J Biomed Nanotechnol 7(4):578–589PubMedCrossRefGoogle Scholar
  84. Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Muller R et al (2006) Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27(1):108–118PubMedCrossRefGoogle Scholar
  85. Lherm C, Müller RH, Puisieux F, Couvreur P (1992) Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm 84(1):13–22CrossRefGoogle Scholar
  86. Li X, Radomski A, Corrigan OI, Tajber L, Menezes FS, Endter S et al (2009) Platelet compatibility of PLGA, chitosan and PLGA–chitosan nanoparticles. Nanomedicine 4(7):735–746PubMedCrossRefGoogle Scholar
  87. Liao L, Zhang M, Liu H, Zhang X, Xie Z, Zhang Z et al (2014) Subchronic toxicity and immunotoxicity of MeO-PEG-poly(d, l-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats. Nanotechnology 25(24):245705PubMedCrossRefGoogle Scholar
  88. Lira MC, Santos-Magalhães NS, Nicolas V, Marsaud V, Silva MP, Ponchel G, Vauthier C (2011) Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm 79(1):162–170PubMedCrossRefGoogle Scholar
  89. Liu Y, Li W, Lao F, Liu Y, Wang L, Bai R et al (2011a) Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 32(32):8291–8303PubMedCrossRefGoogle Scholar
  90. Liu Q, Shao X, Chen J, Shen Y, Feng C, Gao X et al (2011b) In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain. Toxicol Appl Pharmacol 251(1):79–84PubMedCrossRefGoogle Scholar
  91. Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341PubMedPubMedCentralCrossRefGoogle Scholar
  92. Luo R, Neu B, Venkatraman SS (2012) Surface functionalization of nanoparticles to control cell interactions and drug release. Small 8(16):2585–2594PubMedCrossRefGoogle Scholar
  93. Luo Y, Teng Z, Wang TT, Wang Q (2013) Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate. J Agric Food Chem 61(31):7621–7629PubMedCrossRefGoogle Scholar
  94. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174PubMedCrossRefGoogle Scholar
  95. Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4(9):546–547PubMedCrossRefGoogle Scholar
  96. Maya S, Indulekha S, Sukhithasri V, Smitha KT, Nair SV, Jayakumar R et al (2012) Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol 51(4):392–399PubMedCrossRefGoogle Scholar
  97. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558PubMedPubMedCentralCrossRefGoogle Scholar
  98. Merodio M, Irache JM, Valamanesh F, Mirshahi M (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23(7):1587–1594PubMedCrossRefGoogle Scholar
  99. Mitchell RN (2004) Innate and adaptive immunity: the immune response to foreign materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, Amsterdam, pp 304–318Google Scholar
  100. Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN (2007) Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119(1):77–85PubMedCrossRefGoogle Scholar
  101. Mo Y, Barnett ME, Takemoto D, Davidson H, Kompella UB (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746–757PubMedPubMedCentralGoogle Scholar
  102. Moghimi SM, Hunter C, Dadswell CM, Savay S, Alving C, Szebeni J (2004) Causative factors behind poloxamer 188 (Pluronic F68, Flocor)-induced complement activation in human sera. A protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels. Biochim Biophys Acta 1689(2):103–113PubMedCrossRefGoogle Scholar
  103. Moghimi SM, Andersen AJ, Hashem SH, Lettiero B, Ahmadvand D, Hunter AC et al (2010) Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release 146(2):175–181PubMedCrossRefGoogle Scholar
  104. Mohammadi Ghalaei P, Varshosaz J, Sadeghi Aliabadi H (2014) Evaluating cytotoxicity of hyaluronate targeted solid lipid nanoparticles of etoposide on SK-OV-3 cells. J Drug Deliv 2014:746325PubMedPubMedCentralCrossRefGoogle Scholar
  105. Moulari B, Béduneau A, Pellequer Y, Lamprecht A (2014) Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release 188:9–17PubMedCrossRefGoogle Scholar
  106. Muller RH, Lherm C, Herbort J, Couvreur P (1990) In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials 11(8):590–595PubMedCrossRefGoogle Scholar
  107. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J Control Release 125(3):193–209PubMedCrossRefGoogle Scholar
  108. Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S et al (2011) Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomed 6:2591–2605Google Scholar
  109. Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1–2):215–221PubMedCrossRefGoogle Scholar
  110. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  111. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627PubMedCrossRefGoogle Scholar
  112. Nemmar A, Hoylaerts MF, Hoet PH, Nemery B (2004) Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol Lett 149(1–3):243–253PubMedCrossRefGoogle Scholar
  113. Nemmar A, Dhanasekaran S, Yasin J, Ba-Omar H, Fahim MA, Kazzam EE et al (2009) Evaluation of the direct systemic and cardiopulmonary effects of diesel particles in spontaneously hypertensive rats. Toxicology 262(1):50–56PubMedCrossRefGoogle Scholar
  114. Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058–1062PubMedPubMedCentralCrossRefGoogle Scholar
  115. Oberdorster G, Oberdorster E, Oberdorster J (2005a) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839PubMedPubMedCentralCrossRefGoogle Scholar
  116. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K et al (2005b) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8PubMedPubMedCentralCrossRefGoogle Scholar
  117. Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25CrossRefGoogle Scholar
  118. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437–445PubMedCrossRefGoogle Scholar
  119. Ojer P, de Cerain AL, Areses P, Penuelas I, Irache JM (2012) Toxicity studies of poly(anhydride) nanoparticles as carriers for oral drug delivery. Pharm Res 29(9):2615–2627PubMedCrossRefGoogle Scholar
  120. Ojer P, Neutsch L, Gabor F, Irache JM, Lopez de Cerain A (2013) Cytotoxicity and cell interaction studies of bioadhesive poly(anhydride) nanoparticles for oral antigen/drug delivery. J Biomed Nanotechnol 9(11):1891–1903PubMedCrossRefGoogle Scholar
  121. Ojer P, Iglesias T, Azqueta A, Irache JM, López de Cerain A (2015) Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs. Eur J Pharm Biopharm 97(Pt A):206–217PubMedCrossRefGoogle Scholar
  122. Panagi Z, Beletsi A, Evangelatos G, Livaniou E, Ithakissios DS, Avgoustakis K (2001) Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA-mPEG nanoparticles. Int J Pharm 221(1–2):143–152PubMedCrossRefGoogle Scholar
  123. Pandita D, Kumar S, Lather V (2015) Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospective. Drug Discov Today 20(1):95–104PubMedCrossRefGoogle Scholar
  124. Panessa-Warren BJ, Maye MM, Warren JB, Crosson KM (2009) Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. Environ Pollut 157(4):1140–1151PubMedCrossRefGoogle Scholar
  125. Pathak D, Kumar P, Kuppusamy G, Gupta A, Kamble B, Wadhwani A (2014) Physicochemical characterization and toxicological evaluation of plant-based anionic polymers and their nanoparticulated system for ocular delivery. Nanotoxicology 8(8):843–855PubMedCrossRefGoogle Scholar
  126. Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gormis JM et al (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60(1):121–128PubMedCrossRefGoogle Scholar
  127. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303PubMedCrossRefGoogle Scholar
  128. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51CrossRefGoogle Scholar
  129. Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Alonso MJ (2006) Chitosan–PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control Release 111(3):299–308PubMedCrossRefGoogle Scholar
  130. Prieto E, Puente B, Uixera A, Garcia de Jalon JA, Perez S, Pablo L et al (2012) Gantrez AN nanoparticles for ocular delivery of memantine: in vitro release evaluation in albino rabbits. Ophthalmic Res 48(3):109–117PubMedCrossRefGoogle Scholar
  131. Prow TW, Bhutto I, Kim SY, Grebe R, Merges C, McLeod DS et al (2008) Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4(4):340–349PubMedPubMedCentralGoogle Scholar
  132. Qi L, Xu Z, Jiang X, Li Y, Wang M (2005) Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett 15(5):1397–1399PubMedCrossRefGoogle Scholar
  133. Qi J, Yao P, He F, Yu C, Huang C (2010) Nanoparticles with dextran/chitosan shell and BSA/chitosan core—doxorubicin loading and delivery. Int J Pharm 393(1–2):176–184PubMedGoogle Scholar
  134. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T et al (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146(6):882–893PubMedPubMedCentralCrossRefGoogle Scholar
  135. Reasor MJ, Hastings KL, Ulrich RG (2006) Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 5(4):567–583PubMedCrossRefGoogle Scholar
  136. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164PubMedCrossRefGoogle Scholar
  137. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clarthrin- and caveolae-mediated endocytosis. Biochem J 377(Pt 1):159–169PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rekha MR, Sharma CP (2009) Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release 135(2):144–151PubMedCrossRefGoogle Scholar
  139. Ren WH, Chang J, Yan CH, Qian XM, Long LX, He B et al (2010) Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma. J Mater Sci Mater Med 21(9):2673–2681PubMedCrossRefGoogle Scholar
  140. Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46(3):255–263PubMedCrossRefGoogle Scholar
  141. Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (d, l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82(1):105–114PubMedCrossRefGoogle Scholar
  142. Schmid O, Möller W, Semmler-Behnke M, Ferron GA, Karg E, Lipka J et al (2009) Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 14(Suppl 1):67–73PubMedCrossRefGoogle Scholar
  143. Schmitz G, Grandl M (2009) Endolysossomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim Biophys Acta 1791(6):524–539PubMedCrossRefGoogle Scholar
  144. Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J et al (2010a) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 6(5):662–671PubMedGoogle Scholar
  145. Semete B, Booysen LI, Kalombo L, Venter JD, Katata L, Ramalapa B et al (2010b) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 249(2):158–165PubMedCrossRefGoogle Scholar
  146. Severino P, Andreani T, Jager A, Chaud W, Santana MH, Silva AM et al (2014) Solid lipid nanoparticles for hydrophilic biotech drugs: optimization and cell viability studies (Caco-2 & HEPG-2 cell lines). Eur J Med Chem 23(81):28–34CrossRefGoogle Scholar
  147. Seyfoddin A, Shaw J, Al-Kassas R (2010) Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 17(7):467–489PubMedCrossRefGoogle Scholar
  148. Shah NB, Vercellotti GM, White JG, Fegan A, Wagner CR, Bischof JC (2012) Blood-nanoparticle interactions and in vivo biodistribution: impact of surface PEG and ligand properties. Mol Pharm 9(8):2146–2155PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shao X, Liu Q, Zhang C, Zheng X, Chen J, Zha Y et al (2013) Concanavalin A-conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal drug delivery to the cervical lymph nodes. J Microencapsul 30(8):780–786PubMedCrossRefGoogle Scholar
  150. Shrestha N, Shahbazi MA, Araujo F, Zhang H, Makila EM, Kauppila J et al (2014) Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials 35(25):7172–7179PubMedCrossRefGoogle Scholar
  151. Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW (2009) In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 30(12):2329–2339PubMedCrossRefGoogle Scholar
  152. Stuart D, Löbenberg R, Ku T, Azarmi S, Ely L, Roa W et al (2006) Biophysical investigation of nanoparticle interactions with lung surfactant model systems. J Biomed Nanotechnol 2(3–4):245–252CrossRefGoogle Scholar
  153. Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced immune toxicity. Toxicology 216(2–3):106–121PubMedCrossRefGoogle Scholar
  154. Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63(12):1020–1030PubMedCrossRefGoogle Scholar
  155. Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193PubMedCrossRefGoogle Scholar
  156. Tseng YC, Tabata Y, Hyon SH, Ikada Y (1990a) In vitro toxicity test of 2-cyanoacrylate polymers by cell culture method. J Biomed Mater Res 24(10):1355–1367PubMedCrossRefGoogle Scholar
  157. Tseng YC, Hyon SH, Ikada Y (1990b) Modification of the synthesis and investigation of properties for 2-cyanoacrylates. Biomaterials 11(1):73–79PubMedCrossRefGoogle Scholar
  158. Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55(4):519–548PubMedCrossRefGoogle Scholar
  159. Vauthier C, Lindner P, Cabane B (2009) Configuration of bovine serum albumin adsorbed on polymer particles with grafted dextran corona. Colloids Surf B Biointerfaces 69(2):207–215PubMedCrossRefGoogle Scholar
  160. Vauthier C, Persson B, Lindner P, Cabane B (2011) Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials 32(6):1646–1656PubMedCrossRefGoogle Scholar
  161. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21PubMedCrossRefGoogle Scholar
  162. Vittaz M, Bazile D, Spenlehauer G, Verrecchia T, Veillard M, Puisieux F, Labarre D (1996) Effect of PEO surface density on long circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17(16):1575–1581PubMedCrossRefGoogle Scholar
  163. Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP (2006) Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78(3):620–628PubMedCrossRefGoogle Scholar
  164. Weiss CK, Lorenz MR, Landfester K, Mailänder V (2007) Cellular uptake behavior of unfunctionalized and functionalized PBCA particles prepared in a miniemulsion. Macromol Biosci 7(7):883–896PubMedCrossRefGoogle Scholar
  165. Wen Z, Yan Z, He R, Pang Z, Guo L, Qian Y et al (2011) Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Deliv 18(8):555–561PubMedCrossRefGoogle Scholar
  166. Williams D (2003) Revisiting the definition of biocompatibility. Med Device Technol 14(8):10–13Google Scholar
  167. Wing KY, Feng SS (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(15):2713–2722CrossRefGoogle Scholar
  168. Xu L, Xu X, Chen H, Li X (2013) Ocular biocompatibility and tolerance study of biodegradable polymeric micelles in the rabbit eye. Colloids Surf B Biointerfaces 112:30–34PubMedCrossRefGoogle Scholar
  169. Yacobi NR, Malmstadt N, Fazlollahi F, DeMaio L, Marchelletta R, Hamm-Alvarez SF et al (2010) Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42(5):604–614PubMedCrossRefGoogle Scholar
  170. Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal GP (2008) Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target 16(6):464–478PubMedCrossRefGoogle Scholar
  171. Yan Y, Gordon WM, Wang DY (2013) Nasal epithelial repair and remodeling in physical injury, infection, and inflammatory diseases. Curr Opin Otolaryngol Head Neck Surg 21(3):263–270PubMedCrossRefGoogle Scholar
  172. Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonaje K, Ho YC et al (2011) Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32(26):6164–6173PubMedCrossRefGoogle Scholar
  173. Yin L, Ding J, He C, Cui L, Tang C et al (2009) Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 30(29):5691–5700PubMedCrossRefGoogle Scholar
  174. Yu T, Malugin A, Ghandehari H (2011) The impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728PubMedPubMedCentralCrossRefGoogle Scholar
  175. Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13(5):5554–5570PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zaki NM, Hafez MM (2012) Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech 13(2):411–421PubMedPubMedCentralCrossRefGoogle Scholar
  177. Zandanel C, Vauthier C (2012) Poly(isobutylcyanoacrylate) nanoparticles decorated with chitosan: effect of conformation of chitosan chains at the surface on complement activation properties. J Colloid Sci Biotechnol 1:68–81CrossRefGoogle Scholar
  178. Zauner W, Farrow NA, Haines AM (2001) In vitro uptake of polystyrene micro spheres: effect of particle size, cell line and cell density. J Control Release 71(1):39–51PubMedCrossRefGoogle Scholar
  179. Zhang Z, Feng SS (2006) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)–tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27(21):4025–4033PubMedCrossRefGoogle Scholar
  180. Zhang C, Qu G, Sun Y, Yang T, Yao Z, Shen W et al (2008) Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs. Eur J Pharm Sci 33(4–5):415–423PubMedCrossRefGoogle Scholar
  181. Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J (2012) Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 45(5):632–638PubMedCrossRefGoogle Scholar
  182. Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5(2):1366–1375PubMedCrossRefGoogle Scholar
  183. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Juan M. Irache
    • 1
    Email author
  • Nekane Martín-Arbella
    • 1
  • Patricia Ojer
    • 1
    • 2
  • Amaya Azqueta
    • 2
  • Adela Lopez de Cerain
    • 2
  1. 1.Department of Pharmacy and Pharmaceutical TechnologyUniversity of NavarraPamplonaSpain
  2. 2.Department of Pharmacology and ToxicologyUniversity of NavarraPamplonaSpain

Personalised recommendations