Interaction Between Nanoparticles and Plasma Proteins: Effects on Nanoparticle Biodistribution and Toxicity

  • Anna N. Ilinskaya
  • Marina A. DobrovolskaiaEmail author


Nanoparticles are increasingly used in biomedical applications as active pharmaceutical ingredients, drug carriers, or medical devices. Nanoparticles interaction with plasma proteins may influence their biodistribution by promoting interaction with and uptake by the circulating and tissue resident phagocytes. Biodistribution to off intended target-sites may lead to decrease in therapeutic efficacy and result in undesirable toxicities. Therefore understanding nanoparticle physicochemical properties, which determine protein binding, and consequences of protein corona on nanoparticle biodistribution and toxicity are important elements of the preclinical development of nanomedicines and nanoparticle-based medical devices. The focus of this chapter is to discuss the most recent data on nanoparticle interactions with blood components and how particle size and surface charge define their compatibility with the immune system.


Bovine serum albumin (BSA) Complement activation related pseudoallergy (CARPA) Complement receptor (CR) High density lipoprotein (HDL) Mononuclear phagocytic system (MPS) Mass spectrometry (MS) N-Acetyltransferase 1 (NAC1) Polyacrylamide gel electrophoresis (PAGE) Pharmacodynamic (PD) Poly(ethylene glycol) (PEG) Pharmacokinetic (PK) Reactive oxygen species (ROS) Thermo-responsive diblock copolymer nanoparticles (TDCN) 



This project has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government.


  1. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867PubMedCrossRefGoogle Scholar
  3. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P et al (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286(2):L344–L353PubMedCrossRefGoogle Scholar
  4. Capriotti AL, Cavaliere C, Foglia P, Samperi R, Stampachiacchiere S, Ventura S et al (2014) Multiclass analysis of mycotoxins in biscuits by high performance liquid chromatography-tandem mass spectrometry. Comparison of different extraction procedures. J Chromatogr A 1343:69–78PubMedCrossRefGoogle Scholar
  5. Caron WP, Lay JC, Fong AM, La-Beck NM, Kumar P, Newman SE et al (2013a) Translational studies of phenotypic probes for the mononuclear phagocyte system and liposomal pharmacology. J Pharmacol Exp Ther 347(3):599–606PubMedPubMedCentralCrossRefGoogle Scholar
  6. Caron WP, Rawal S, Song G, Kumar P, Lay JC, Zamboni WC (2013b) Bidirectional interaction between nanoparticles and cells of the mononuclear phagocytic system. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engoineered nanomaterilas. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 385–416CrossRefGoogle Scholar
  7. Casals E, Puntes VF (2012) Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. Nanomedicine (Lond) 7(12):1917–1930CrossRefGoogle Scholar
  8. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chellat F, Grandjean-Laquerriere A, Le Naour R, Fernandes J, Yahia L, Guenounou M et al (2005) Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials 26(9):961–970PubMedCrossRefGoogle Scholar
  10. Chonn A, Semple SC, Cullis PR (1992) Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem 267(26):18759–18765PubMedGoogle Scholar
  11. Csaba N, Sanchez A, Alonso MJ (2006a) PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release 113(2):164–172PubMedCrossRefGoogle Scholar
  12. Csaba N, Garcia-Fuentes M, Alonso MJ (2006b) The performance of nanocarriers for transmucosal drug delivery. Expert Opin Drug Deliv 3(4):463–478PubMedCrossRefGoogle Scholar
  13. Cui Z, Mumper RJ (2002) Coating of cationized protein on engineered nanoparticles results in enhanced immune responses. Int J Pharm 238(1–2):229–239PubMedCrossRefGoogle Scholar
  14. Cui Z, Hsu CH, Mumper RJ (2003) Physical characterization and macrophage cell uptake of mannan-coated nanoparticles. Drug Dev Ind Pharm 29(6):689–700PubMedCrossRefGoogle Scholar
  15. Cukalevski R, Lundqvist M, Oslakovic C, Dahlback B, Linse S, Cedervall T (2011) Structural changes in apolipoproteins bound to nanoparticles. Langmuir 27(23):14360–14369PubMedCrossRefGoogle Scholar
  16. Cuna M, Alonso-Sandel M, Remunan-Lopez C, Pivel JP, Alonso-Lebrero JL, Alonso MJ (2006) Development of phosphorylated glucomannan-coated chitosan nanoparticles as nanocarriers for protein delivery. J Nanosci Nanotechnol 6(9–10):2887–2895PubMedCrossRefGoogle Scholar
  17. Dautova Y, Kozlova D, Skepper JN, Epple M, Bootman MD, Proudfoot D (2014) Fetuin-A and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells. PLoS ONE 9(5):e97565PubMedPubMedCentralCrossRefGoogle Scholar
  18. De Paoli SH, Diduch LL, Tegegn TZ, Orecna M, Strader MB, Karnaukhova E et al (2014) The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. Biomaterials 35(24):6182–6194PubMedCrossRefGoogle Scholar
  19. Demoy M, Andreux JP, Weingarten C, Gouritin B, Guilloux V, Couvreur P (1999) In vitro evaluation of nanoparticles spleen capture. Life Sci 64(15):1329–1337PubMedCrossRefGoogle Scholar
  20. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44PubMedCrossRefGoogle Scholar
  21. Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF (2012) Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 6(10):8962–8969PubMedCrossRefGoogle Scholar
  22. Deng ZJ, Butcher NJ, Mortimer GM, Jia Z, Monteiro MJ, Martin DJ et al (2014) Interaction of human arylamine N-acetyltransferase 1 with different nanomaterials. Drug Metab Dispos 42(3):377–383PubMedCrossRefGoogle Scholar
  23. Di Bucchianico S, Fabbrizi MR, Misra SK, Valsami-Jones E, Berhanu D, Reip P et al (2013) Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis 28(3):287–299PubMedCrossRefGoogle Scholar
  24. Dobrovolskaia MA, McNeil SE (2013a) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466PubMedCrossRefGoogle Scholar
  25. Dobrovolskaia MA, McNeil SE (2013b) Immunological properties of engineered nanomaterilas: an introduction. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World scientific Publishing Co. Pte. Ltd., Singapore, pp 1–24CrossRefGoogle Scholar
  26. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5(2):106–117PubMedGoogle Scholar
  27. Dobrovolskaia MA, Neun BW, Man S, Ye X, Hansen M, Patri AK et al (2014) Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomedicine 10:1453–1463PubMedPubMedCentralGoogle Scholar
  28. Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM et al (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100(1):303–315PubMedCrossRefGoogle Scholar
  29. Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006a) In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27(1):27–36PubMedCrossRefGoogle Scholar
  30. Fang C, Shi B, Hong MH, Pei YY, Chen HZ (2006b) Influence of particle size and MePEG molecular weight on in vitro macrophage uptake and in vivo long circulating of stealth nanoparticles in rats. Yao Xue Xue Bao 41(4):305–312PubMedGoogle Scholar
  31. Fleischer CC, Payne CK (2014) Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J Phys Chem BGoogle Scholar
  32. Franca A, Aggarwal P, Barsov EV, Kozlov SV, Dobrovolskaia MA, Gonzalez-Fernandez A (2011) Macrophage scavenger receptor A mediates the uptake of gold colloids by macrophages in vitro. Nanomedicine (Lond) 6(7):1175–1188CrossRefGoogle Scholar
  33. Gessner A, Lieske A, Paulke B, Muller R (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170PubMedCrossRefGoogle Scholar
  34. Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13(3):179–187PubMedCrossRefGoogle Scholar
  35. Hellstrand E, Boland B, Walsh DM, Linse S (2010) Amyloid beta-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem Neurosci 1(1):13–18PubMedCrossRefGoogle Scholar
  36. Jansch M, Stumpf P, Graf C, Ruhl E, Muller RH (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428(1–2):125–133PubMedCrossRefGoogle Scholar
  37. Jeong SK, Kwon MS, Lee EY, Lee HJ, Cho SY, Kim H et al (2009) BiomarkerDigger: a versatile disease proteome database and analysis platform for the identification of plasma cancer biomarkers. Proteomics 9(14):3729–3740PubMedCrossRefGoogle Scholar
  38. Jeong YS, Oh WK, Kim S, Jang J (2011) Cellular uptake, cytotoxicity, and ROS generation with silica/conducting polymer core/shell nanospheres. Biomaterials 32(29):7217–7225PubMedCrossRefGoogle Scholar
  39. Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8(3):343–357PubMedCrossRefGoogle Scholar
  40. Koutsopoulos S, Patzsch K, Bosker WT, Norde W (2007) Adsorption of trypsin on hydrophilic and hydrophobic surfaces. Langmuir 23(4):2000–2006PubMedCrossRefGoogle Scholar
  41. Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C et al (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10(4):317–325PubMedCrossRefGoogle Scholar
  42. Leroux JC, De Jaeghere F, Anner B, Doelker E, Gurny R (1995) An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(d,l-lactic acid) nanoparticles by human monocytes. Life Sci 57(7):695–703PubMedCrossRefGoogle Scholar
  43. Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E et al (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104(21):8691–8696PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ljubimova JY, Fujita M, Ljubimov AV, Torchilin VP, Black KL, Holler E (2008a) Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery. Nanomedicine (Lond) 3(2):247–265CrossRefGoogle Scholar
  45. Ljubimova JY, Fujita M, Khazenzon NM, Lee BS, Wachsmann-Hogiu S, Farkas DL et al (2008b) Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 171(2):195–203PubMedCrossRefGoogle Scholar
  46. Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20(24):10639–10647PubMedCrossRefGoogle Scholar
  47. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174PubMedCrossRefGoogle Scholar
  49. Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M et al (2006) Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 317(3):1246–1253PubMedCrossRefGoogle Scholar
  50. Milani S, Bombelli FB, Pitek AS, Dawson KA, Radler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3):2532–2541PubMedCrossRefGoogle Scholar
  51. Moghimi SM (2014) Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth. J Control Release 190:556–562PubMedCrossRefGoogle Scholar
  52. Moghimi SM, Farhangrazi ZS (2013) Nanomedicine and the complement paradigm. Nanomedicine 9(4):458–460PubMedGoogle Scholar
  53. Moghimi SM, Andersen AJ, Ahmadvand D, Wibroe PP, Andresen TL, Hunter AC (2011) Material properties in complement activation. Adv Drug Deliv Rev 63(12):1000–1007PubMedCrossRefGoogle Scholar
  54. Mohr K, Sommer M, Baier G, Schottler S, Okwieka P, Tenzer S, Landfester K, Mailander V, Schmidt M, Meyer RG (2014) Aggregation behavior of polysterene-nanoparticles in human blood serum and its impact on the in vivo distribution in mice. J Nanomed Nanotechnol 5(2)Google Scholar
  55. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786PubMedCrossRefGoogle Scholar
  56. Monopoli MP, Wan S, Bombelli FB, Mahon E, Dawson KA (2013a) Comparisons of nanoparticle protein corona complexes isolated with different methods. Nano Life 3(4):9CrossRefGoogle Scholar
  57. Monopoli MP, Pitek AS, Lynch I, Dawson KA (2013b) Formation and characterization of the nanoparticle-protein corona. Methods Mol Biol 1025:137–155PubMedCrossRefGoogle Scholar
  58. Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T (2007a) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1–2):215–221PubMedCrossRefGoogle Scholar
  59. Nagayama S, Ogawara K, Minato K, Fukuoka Y, Takakura Y, Hashida M et al (2007b) Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int J Pharm 329(1–2):192–198PubMedCrossRefGoogle Scholar
  60. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557PubMedCrossRefGoogle Scholar
  61. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347PubMedCrossRefGoogle Scholar
  62. Oslakovic C, Cedervall T, Linse S, Dahlback B (2012) Polystyrene nanoparticles affecting blood coagulation. Nanomedicine 8(6):981–986PubMedGoogle Scholar
  63. Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102PubMedCrossRefGoogle Scholar
  64. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183PubMedCrossRefGoogle Scholar
  65. Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46(3):255–263PubMedCrossRefGoogle Scholar
  66. Salvador-Morales C, Sim RB (2013) Complement activation. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 357–384CrossRefGoogle Scholar
  67. Salvador-Morales C, Flahaut E, Sim E, Sloan J, Green ML, Sim RB (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43(3):193–201PubMedCrossRefGoogle Scholar
  68. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143PubMedCrossRefGoogle Scholar
  69. Shang W, Nuffer JH, Dordick JS, Siegel RW (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett 7(7):1991–1995PubMedCrossRefGoogle Scholar
  70. Shang W, Nuffer JH, Muniz-Papandrea VA, Colon W, Siegel RW, Dordick JS (2009) Cytochrome C on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity. Small 5(4):470–476PubMedCrossRefGoogle Scholar
  71. Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213(2):249–259PubMedCrossRefGoogle Scholar
  72. Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216(2–3):106–121PubMedCrossRefGoogle Scholar
  73. Treuel L, Nienhaus UG (2013) Nanoparticles interaction with plasma proteins and its relates to biodistribution. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 151–172CrossRefGoogle Scholar
  74. Triboulet S, Aude-Garcia C, Armand L, Gerdil A, Diemer H, Proamer F et al (2014) Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach. Nanoscale 6(11):6102–6114PubMedCrossRefGoogle Scholar
  75. Vauthier C, Persson B, Lindner P, Cabane B (2011) Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials 32(6):1646–1656PubMedCrossRefGoogle Scholar
  76. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807PubMedCrossRefGoogle Scholar
  77. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132(16):5761–5768PubMedCrossRefGoogle Scholar
  78. Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H et al (2014) The nano-plasma interface: implications of the protein corona. Colloids Surf B Biointerfaces 124:17–24PubMedCrossRefGoogle Scholar
  79. Wu WH, Sun X, Yu YP, Hu J, Zhao L, Liu Q et al (2008) TiO2 nanoparticles promote beta-amyloid fibrillation in vitro. Biochem Biophys Res Commun 373(2):315–318PubMedCrossRefGoogle Scholar
  80. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2(1):85–96PubMedCrossRefGoogle Scholar
  81. Yan Y, Gause KT, Kamphuis MM, Ang CS, O’Brien-Simpson NM, Lenzo JC et al (2013) Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 7(12):10960–10970PubMedCrossRefGoogle Scholar
  82. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I et al (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci USA 107(45):19449–19454PubMedPubMedCentralCrossRefGoogle Scholar
  83. Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core–shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22(19):8178–8185PubMedCrossRefGoogle Scholar
  84. Zaman M, Ahmad E, Qadeer A, Rabbani G, Khan RH (2014) Nanoparticles in relation to peptide and protein aggregation. Int J Nanomed 9:899–912Google Scholar
  85. Zamboni WC, Eiseman JL, Strychor S, Rice PM, Joseph E, Zamboni BA et al (2011a) Tumor disposition of pegylated liposomal CKD-602 and the reticuloendothelial system in preclinical tumor models. J Liposome Res 21(1):70–80PubMedCrossRefGoogle Scholar
  86. Zamboni WC, Maruca LJ, Strychor S, Zamboni BA, Ramalingam S, Edwards RP et al (2011b) Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J Liposome Res 21(2):158–165PubMedCrossRefGoogle Scholar
  87. Zhu M, Souillac PO, Ionescu-Zanetti C, Carter SA, Fink AL (2002) Surface-catalyzed amyloid fibril formation. J Biol Chem 277(52):50914–50922PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Cancer Research Technology Program, Nanotechnology Characterization Laboratory, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research Inc.FrederickUSA

Personalised recommendations