Drug Delivery by Polymer Nanoparticles: The Challenge of Controlled Release and Evaluation

  • Christine CharrueauEmail author
  • Christelle Zandanel


The controlled release of the drugs at the site of action is a key issue for nanoparticulate carriers. The purpose of this chapter is to review the current strategies used to control the release profiles of polymer nanoparticles. Based on 12 representative drugs with hydrophobic or hydrophilic properties, the mechanisms controlling the drug release are described, the different ways to tune the release profile are analyzed, and the methods for evaluating drug release from nanoparticles are discussed. In conclusion, based on the physicochemical properties of the drugs, the types and characteristics of nanoformulations, and the route of administration, promising tracks for tuning release profiles can be proposed. Suggestions for choosing the most appropriate methods for studying drug release are also presented.


Drug release Nanoparticles Hydrophobic drugs Hydrophilic drugs Dissolution Dialysis Diffusion Pharmacokinetics Release evaluation 


  1. Aboubakar M, Puisieux F, Couvreur P, Vauthier C (1999) Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Int J Pharm 183:63–66PubMedCrossRefGoogle Scholar
  2. Acharya S, Sahoo SK (2011) Sustained targeting of Bcr-Abl + leukemia cells by synergistic action of dual drug loaded nanoparticles and its implication for leukemia therapy. Biomaterials 32:5643–5662PubMedCrossRefGoogle Scholar
  3. Agüeros M, Ruiz-Gatón L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G, Irache JM (2009) Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 38:405–413PubMedCrossRefGoogle Scholar
  4. Akbarzadeh A, Mikaeili H, Zarghami N, Mohammad R, Barkhordari A, Davaran S (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomedicine 7:511–526PubMedPubMedCentralGoogle Scholar
  5. Aksungur P, Demirbilek M, Denkbaş EB, Vandervoort J, Ludwig A, Unlü N (2011) Development and characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151:286–294PubMedCrossRefGoogle Scholar
  6. Alam N, Khare V, Dubey R, Saneja A, Kushwaha M, Singh G, Sharma N, Chandan B, Gupta PN (2014) Biodegradable polymeric system for cisplatin delivery: development, in vitro characterization and investigation of toxicity profile. Mater Sci Eng C Mater Biol Appl 38:85–93PubMedCrossRefGoogle Scholar
  7. Alhareth K, Vauthier C, Bourasset F, Gueutin C, Ponchel G, Moussa F (2012) Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur J Pharm Biopharm 81:453–457PubMedCrossRefGoogle Scholar
  8. Ali H, Kalashnikova I, White MA, Sherman M, Rytting E (2013) Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm 454:149–157PubMedPubMedCentralCrossRefGoogle Scholar
  9. Anirudhan TS, Sandeep S (2012) Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J Mater Chem 22:12888–12899CrossRefGoogle Scholar
  10. Ankola DD, Battisti A, Solaro R, Kumar MNVR (2010) Nanoparticles made of multi-block copolymer of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups for oral delivery of cyclosporine A. J R Soc Interface 7(Suppl 4):S475–S481PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bikram M, West JL (2008) Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv 5:1077–1091PubMedCrossRefGoogle Scholar
  12. Bisht S, Feldmann G, Koorstra J-BM, Mullendore M, Alvarez H, Karikari C, Rudek MA, Lee CK, Maitra A, Maitra A (2008) In vivo characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Mol Cancer Ther 7:3878–3888PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bisrat M, Anderberg EK, Barnett MI, Nyström C (1992) Physicochemical aspects of drug release. XV. Investigation of diffusional transport in dissolution of suspended, sparingly soluble drugs. Int J Pharm 80:191–201CrossRefGoogle Scholar
  14. Bonelli P, Tuccillo FM, Federico A, Napolitano M, Borrelli A, Melisi D, Rimoli MG, Palaia R, Arra C, Carinci F (2012) Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations. Int J Nanomedicine 7:5683–5691PubMedPubMedCentralCrossRefGoogle Scholar
  15. Broaders KE, Grandhe S, Fréchet JM (2011) A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc 133:756–758PubMedCrossRefGoogle Scholar
  16. Burger KNJ, Staffhorst RWHM, de Vijlder HC, Velinova MJ, Bomans PH, Frederik PM, de Kruijff B (2002) Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med 8:81–84PubMedCrossRefGoogle Scholar
  17. Cao L, Luo J, Tu K, Wang L-Q, Jiang H (2014) Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf B Biointerfaces 115:212–218PubMedCrossRefGoogle Scholar
  18. Caron J, Maksimenko A, Wack S, Lepeltier E, Bourgaux C, Morvan E, Leblanc K, Couvreur P, Desmaële D (2013) Improving the antitumor activity of squalenoyl-paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene. Adv Healthc Mater 2:172–185PubMedCrossRefGoogle Scholar
  19. Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, Farokhzad OC (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30:1627–1634PubMedCrossRefGoogle Scholar
  20. Chen F, Zhu Y (2012) Chitosan enclosed mesoporous silica nanoparticles as drug nanocarriers: sensitive response to narrow pH range. Microporous Mesoporous Mater 150:83–89CrossRefGoogle Scholar
  21. Chen Y, Yang W, Chang B, Hu H, Fang X, Sha X (2013) In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Eur J Pharm Biopharm 85:406–412PubMedCrossRefGoogle Scholar
  22. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12PubMedCrossRefGoogle Scholar
  23. Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657PubMedCrossRefGoogle Scholar
  24. Cheng WP, Gray AI, Tetley L, Hang Tle B, Schätzlein AG, Uchegbu IF (2006) Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7:1509–1520PubMedCrossRefGoogle Scholar
  25. Cheow WS, Hadinoto K (2011) Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf B 85:214–220CrossRefGoogle Scholar
  26. Cheow WS, Hadinoto K (2012) Self-assembled amorphous drug-polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J Colloid Interface Sci 367:518–526PubMedCrossRefGoogle Scholar
  27. Cournarie F, Chéron M, Besnard M, Vauthier C (2004) Evidence for restrictive parameters in formulation of insulin-loaded nanocapsules. Eur J Pharm Biopharm 57:171–179PubMedCrossRefGoogle Scholar
  28. Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, Wickline SA, Lanza GM (2008) Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol 28:820–826PubMedPubMedCentralCrossRefGoogle Scholar
  29. Damgé C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251PubMedCrossRefGoogle Scholar
  30. De la Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64:967–978PubMedCrossRefGoogle Scholar
  31. De Martimprey H, Bertrand J-R, Malvy C, Couvreur P, Vauthier C (2010) New core-shell nanoparticules for the intravenous delivery of siRNA to experimental thyroid papillary carcinoma. Pharm Res 27:498–509PubMedCrossRefGoogle Scholar
  32. De Matos MBC, Piedade AP, Alvarez-Lorenzo C, Concheiro A, Braga MEM, de Sousa HC (2013) Dexamethasone-loaded poly(ε-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. Int J Pharm 456:269–281PubMedCrossRefGoogle Scholar
  33. De Verdière AC, Dubernet C, Némati F, Soma E, Appel M, Ferté J, Bernard S, Puisieux F, Couvreur P (1997) Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer 76:198–205PubMedCrossRefGoogle Scholar
  34. Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, Huang X, Guo Z, Quan G, Shi X, Chen B, Li G, Wu C (2013) Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine 8:845–854PubMedPubMedCentralGoogle Scholar
  35. Felber AE, Dufresne MH, Leroux JC (2012) pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 64:979–992PubMedCrossRefGoogle Scholar
  36. Ferrara KW (2008) Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 60:1097–1102PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fratoddi I, Venditti I, Cametti C, Palocci C, Chronopoulou L, Marino M, Acconcia F, Russo MV (2012) Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf B Biointerfaces 93:59–66PubMedCrossRefGoogle Scholar
  38. Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H (2005) Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 25:357–367PubMedCrossRefGoogle Scholar
  39. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198PubMedGoogle Scholar
  40. Gide PS, Gidwani SK, Kothule KU (2013) Enhancement of transdermal penetration and bioavailability of poorly soluble acyclovir using solid lipid nanoparticles incorporated in gel cream. Indian J Pharm Sci 75:138–142PubMedPubMedCentralGoogle Scholar
  41. Gökçe EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Güneri T, Caramella C (2008) Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm 364:76–86PubMedCrossRefGoogle Scholar
  42. Gu J, Su S, Zhu M, Li Y, Zhao W, Duan Y, Shi J (2012) Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Microporous Mesoporous Mater 161:160–167CrossRefGoogle Scholar
  43. Guo H, Lai Q, Wang W, Wu Y, Zhang C, Liu Y, Yuan Z (2013a) Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int J Pharm 451:1–11PubMedCrossRefGoogle Scholar
  44. Guo H, Zhang D, Li C, Jia L, Liu G, Hao L, Zheng D, Shen J, Li T, Guo Y, Zhang Q (2013b) Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm 458:31–38PubMedCrossRefGoogle Scholar
  45. Guo S, Wang Y, Miao L, Xu Z, Lin CM, Zhang Y, Huang L (2013c) Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 7:9896–9904PubMedPubMedCentralCrossRefGoogle Scholar
  46. Haddadi A, Elamanchili P, Lavasanifar A, Das S, Shapiro J, Samuel J (2008) Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A 84:885–898PubMedCrossRefGoogle Scholar
  47. Haroun AA, El-Halawany NR, Loira-Pastoriza C, Maincent P (2012) Synthesis and in vitro release study of ibuprofen-loaded gelatin graft copolymer nanoparticles. Drug Dev Ind Pharm 40:61–65PubMedCrossRefGoogle Scholar
  48. Hasanovic A, Zehl M, Reznicek G, Valenta C (2009) Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol 61:1609–1616PubMedCrossRefGoogle Scholar
  49. He C, Yin L, Tang C, Yin C (2013) Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials 34:2843–2854PubMedCrossRefGoogle Scholar
  50. He X, Hai L, Su J, Wang K, Wu X (2011) One-pot synthesis of sustained-released doxorubicin silica nanoparticles for aptamer targeted delivery to tumor cells. Nanoscale 3:2936–2942PubMedCrossRefGoogle Scholar
  51. Hermans K, Van den Plas D, Everaert A, Weyenberg W, Ludwig A (2012) Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles. Eur J Pharm Biopharm 82:27–35PubMedCrossRefGoogle Scholar
  52. Hoare T, Timko BP, Santamaria J, Goya GF, Irusta S, Lau S, Stefanescu CF, Lin D, Langer R, Kohane DS (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11:1395–1400PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hua MY, Yang HW, Chuang CK, Tsai RY, Chen WJ, Chuang KL, Chang YH, Chuang HC, Pang ST (2010) Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31:7355–7363PubMedCrossRefGoogle Scholar
  54. Jäger A, Gromadzki D, Jäger E, Giacomelli FC, Kozlowska A, Kobera L, Brus J, Říhová B, Fray ME, Ulbrich K, Štĕpánek P (2012) Novel “soft” biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system. Soft Matter 8:4343–4354CrossRefGoogle Scholar
  55. Jäger E, Venturini CG, Poletto FS, Colomé LM, Pohlmann JP, Bernardi A, Battastini AM, Guterres SS, Pohlmann AR (2009) Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J Biomed Nanotechnol 5:130–140PubMedCrossRefGoogle Scholar
  56. Jiang B, Hu L, Gao C, Shen J (2005) Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int J Pharm 304:220–230PubMedCrossRefGoogle Scholar
  57. Jiang X, Xin H, Sha X, Gu J, Jiang Y, Law K, Chen Y, Chen L, Wang X, Fang X (2011) PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation. Int J Pharm 420:385–394PubMedCrossRefGoogle Scholar
  58. Jung SH, Lim DH, Jung SH, Lee JE, Jeong K-S, Seong H, Shin BC (2009) Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 37:313–320PubMedCrossRefGoogle Scholar
  59. Kamel AO, Awad GAS, Geneidi AS, Mortada ND (2009) Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS PharmSciTech 10:1427–1436PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kang H, Trondoli AC, Zhu G, Chen Y, Chang YJ, Liu H, Huang YF, Zhang X, Tan W (2011) Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5:5094–5099PubMedPubMedCentralCrossRefGoogle Scholar
  61. Karavana SY, Gökçe EH, Rençber S, Özbal S, Pekçetin C, Güneri P, Ertan G (2012) A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int J Nanomedicine 7:5693–5704PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kenyon NJ, Bratt JM, Lee J, Luo J, Franzi LM, Zeki AA, Lam KS (2013) Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS ONE. doi: 10.1371/journal.pone.0077730 Google Scholar
  63. Kim MS, Kim JS, Park HJ, Cho WK, Cha KH, Hwang SJ (2011) Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomedicine 6:2997–3009PubMedPubMedCentralGoogle Scholar
  64. Lai J, Lu Y, Yin Z, Hu F, Wu W (2010) Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles. Int J Nanomedicine 5:13–23PubMedPubMedCentralGoogle Scholar
  65. Lee DW, Yun KS, Ban HS, Choe W, Lee SK, Lee KY (2009) Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release 139:146–152PubMedCrossRefGoogle Scholar
  66. Lee KD, Jeong YI, Kim DH, Lim GT, Choi KC (2013) Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer. Int J Nanomedicine 8:2835–2845PubMedPubMedCentralGoogle Scholar
  67. Lee SJ, Hong G-Y, Jeong Y-I, Kang M-S, Oh J-S, Song C-E, Lee HC (2012) Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 433:121–128PubMedCrossRefGoogle Scholar
  68. Lee W, Park J, Yang EH, Suh H, Kim SH, Chung DS, Choi K, Yang CW, Park J (2002) Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J Control Release 84:115–123PubMedCrossRefGoogle Scholar
  69. Lee Y, Graeser R, Kratz F, Geckeler KE (2011) Paclitaxel-loaded polymer nanoparticles for the reversal of multidrug resistance in breast cancer cells. Adv Funct Mater 21:4211–4218CrossRefGoogle Scholar
  70. Legrand P, Chéron M, Leroy L, Bolard J (1997) Release of amphotericin B from delivery systems and its action against fungal and mammalian cells. J Drug Target 4:311–319PubMedCrossRefGoogle Scholar
  71. Lehtovaara BC, Verma MS, Gu FX (2012) Synthesis of curdlan-graft-poly(ethylene glycol) and formulation of doxorubicin-loaded core–shell nanoparticles. J Bioact Compat Polym 27:3–17CrossRefGoogle Scholar
  72. Leobandung W, Ichikawa H, Fukumori Y, Peppas NA (2002) Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 80:357–363PubMedCrossRefGoogle Scholar
  73. Li F, Sun J, Zhu H, Wen X, Lin C, Shi D (2011) Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces 88:58–62PubMedCrossRefGoogle Scholar
  74. Li L, Bai Z, Levkin PA (2013a) Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery. Biomaterials 34:8504–8510PubMedCrossRefGoogle Scholar
  75. Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H (2013b) A mesoporous silica nanoparticle–PEI–Fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials 34:1391–1401PubMedCrossRefGoogle Scholar
  76. Li X, Deng X, Huang Z (2001) In vitro protein release and degradation of poly-dl-lactide-poly(ethylene glycol) microspheres with entrapped human serum albumin: quantitative evaluation of the factors involved in protein release phases. Pharm Res 18:117–124PubMedCrossRefGoogle Scholar
  77. Lodha A, Lodha M, Patel A, Chaudhuri J, Dalal J, Edwards M, Douroumis D (2012) Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A. J Pharm Bioallied Sci 4:S92–S94PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lv P-P, Wei W, Yue H, Yang T-Y, Wang L-Y, Ma G-H (2011) Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 12:4230–4239PubMedCrossRefGoogle Scholar
  79. Lv S, Li M, Tang Z, Song W, Sun H, Liu H, Chen X (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342PubMedCrossRefGoogle Scholar
  80. Malhotra M, Tomaro-Duchesneau C, Prakash S (2013) Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 34:1270–1280PubMedCrossRefGoogle Scholar
  81. Mansouri M, Pouretedal HR, Vosoughi V (2011) Preparation and characterization of ibuprofen nanoparticles by using solvent/antisolvent precipitation. Open Conf Proc J 2:88–94CrossRefGoogle Scholar
  82. Michel C, Aprahamian M, Defontaine L, Couvreur P, Damgé C (1991) The effect of site of administration in the gastrointestinal tract on the absorption of insulin from nanocapsules in diabetic rats. J Pharm Pharmacol 43:1–5PubMedCrossRefGoogle Scholar
  83. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003PubMedCrossRefGoogle Scholar
  84. Nahar M, Mishra D, Dubey V, Jain NK (2008) Development, characterization, and toxicity, evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine 4:252–261PubMedGoogle Scholar
  85. Nakarani M, Patel P, Patel J, Patel P, Murthy RSR, Vaghani SS (2010) Cyclosporine A-nanosuspension: formulation, characterization and in vivo comparison with a marketed formulation. Sci Pharm 78:345–361PubMedPubMedCentralCrossRefGoogle Scholar
  86. Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K, Menon D (2014) Sequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater 10:2112–2124PubMedCrossRefGoogle Scholar
  87. Park M-J, Balakrishnan P, Yang S-G (2013) Polymeric nanocapsules with SEDDS oil-core for the controlled and enhanced oral absorption of cyclosporine. Int J Pharm 441:757–764PubMedCrossRefGoogle Scholar
  88. Parveen S, Sahoo SK (2008) Polymeric nanoparticles for cancer therapy. J Drug Target 16:108–123PubMedCrossRefGoogle Scholar
  89. Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383PubMedCrossRefGoogle Scholar
  90. Patel PA, Patravale VB (2011) AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. J Biomed Nanotechnol 7:632–639PubMedCrossRefGoogle Scholar
  91. Pilapong C, Keereeta Y, Munkhetkorn S, Thongtem S, Thongtem T (2013) Enhanced doxorubicin delivery and cytotoxicity in multidrug resistant cancer cells using multifunctional magnetic nanoparticles. Colloids Surf B Biointerfaces 113C:249–253Google Scholar
  92. Pinto-Alphandary H, Aboubakar M, Jaillard D, Couvreur P, Vauthier C (2003) Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm Res 20:1071–1084PubMedCrossRefGoogle Scholar
  93. Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9PubMedCrossRefGoogle Scholar
  94. Rahman Z, Zidan AS, Habib MJ, Khan MA (2010) Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett–Burman design. Int J Pharm 389:186–194PubMedCrossRefGoogle Scholar
  95. Ren F, Chen R, Wang Y, Sun Y, Jiang Y, Li G (2011) Paclitaxel-loaded poly(n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res 28:897–906PubMedCrossRefGoogle Scholar
  96. Ribeiro TG, Chavez-Fumagalli MA, Valadares DG, Franca JR, Rodrigues LB, Duarte MC, Lage PS, Andrade PHR, Lage DP, Arruda LV, Abanades DR, Costa LE, Martins VT, Tavares CA, Castilho RO, Coelho EA, Faraco AA (2014) Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine 9:877–890PubMedPubMedCentralCrossRefGoogle Scholar
  97. Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J, Panyam J (2012) Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 9:2103–2110PubMedPubMedCentralCrossRefGoogle Scholar
  98. Saengkrit N, Sanitrum P, Woramongkolchai N, Saesoo S, Pimpha N, Chaleawlert-Umpon S, Tencomnao T, Puttipipatkhachorn S (2012) The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydr Polym 90:1323–1329PubMedCrossRefGoogle Scholar
  99. Shah M, Agrawal YK, Garala K, Ramkishan A (2012) Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride. Indian J Pharm Sci 74:434–442PubMedPubMedCentralCrossRefGoogle Scholar
  100. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157PubMedCrossRefGoogle Scholar
  101. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362PubMedCrossRefGoogle Scholar
  102. Su X, Wang Z, Li L, Zheng M, Zheng C, Gong P, Zhao P, Ma Y, Tao Q, Cai L (2013) Lipid-polymer nanoparticles encapsulating doxorubicin and 2′-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol Pharm 10:1901–1909PubMedCrossRefGoogle Scholar
  103. Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY (2012) pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 45:619–629PubMedCrossRefGoogle Scholar
  104. Tahara K, Yamamoto H, Hirashima N, Kawashima Y (2010) Chitosan-modified poly(d, l-lactide-co-glycolide) nanospheres for improving siRNA delivery and gene-silencing effects. Eur J Pharm Biopharm 74:421–426PubMedCrossRefGoogle Scholar
  105. Tan SW, Billa N (2014) Lipid effects on expulsion rate of amphotericin B from solid lipid nanoparticles. AAPS PharmSciTech 15:287–295PubMedCrossRefGoogle Scholar
  106. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384PubMedGoogle Scholar
  107. Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D (2013) Mitochondrial delivery of Doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm Res 30:2832–2842PubMedCrossRefGoogle Scholar
  108. Toub N, Bertrand JR, Tamaddon A, Elhamess H, Hillaireau H, Maksimenko A, Maccario J, Malvy C, Fattal E, Couvreur P (2006) Efficacy of siRNA nanocapsules targeted against the EWS–Fli1 oncogene in Ewing sarcoma. Pharm Res 23:892–900PubMedCrossRefGoogle Scholar
  109. Uccello-Barretta G, Balzano F, Aiello F, Senatore A, Fabiano A, Zambito Y (2014) Mucoadhesivity and release properties of quaternary ammonium-chitosan conjugates and their nanoparticulate supramolecular aggregates: an NMR investigation. Int J Pharm 461:489–494PubMedCrossRefGoogle Scholar
  110. Urbán-Morlán Z, Ganem-Rondero A, Melgoza-Contreras LM, Escobar-Chávez JJ, Nava-Arzaluz MG, Quintanar-Guerrero D (2010) Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomedicine 5:611–620PubMedPubMedCentralGoogle Scholar
  111. Van de Ven H, Paulussen C, Feijens PB, Matheeussen A, Rombaut P, Kayaert P, Van den Mooter G, Weyenberg W, Cos P, Maes L, Ludwig A (2012) PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release 161:795–803PubMedCrossRefGoogle Scholar
  112. Wang B, Jiang W, Yan H, Zhang X, Yang L, Deng L, Singh GK, Pan J (2011) Novel PEG-graft-PLA nanoparticles with the potential for encapsulation and controlled release of hydrophobic and hydrophilic medications in aqueous medium. Int J Nanomedicine 6:1443–1451PubMedPubMedCentralGoogle Scholar
  113. Wang J, Feng SS, Wang S, Chen ZY (2010) Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment. Int J Pharm 400:194–200PubMedCrossRefGoogle Scholar
  114. Wang Y, Liu P, Qiu L, Sun Y, Zhu M, Gu L, Di W, Duan Y (2013) Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials 34:4068–4077PubMedCrossRefGoogle Scholar
  115. Woo HN, Chung HK, Ju EJ, Jung J, Kang HW, Lee SW, Seo MH, Lee JS, Lee JS, Park HJ, Song SY, Jeong SY, Choi EK (2012) Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy. Int J Nanomedicine 7:2197–2208PubMedPubMedCentralGoogle Scholar
  116. Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23PubMedCrossRefGoogle Scholar
  117. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286PubMedPubMedCentralCrossRefGoogle Scholar
  118. Xie M, Shi H, Li Z, Shen H, Ma K, Li B, Shen S, Jin Y (2013) A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf B Biointerfaces 110:138–147PubMedCrossRefGoogle Scholar
  119. Xing R, Lin H, Jiang P, Qu F (2012) Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen. Colloids Surf A 403:7–14CrossRefGoogle Scholar
  120. Xu J, Ma L, Liu Y, Xu F, Nie J, Ma G (2012) Design and characterization of antitumor drug paclitaxel-loaded chitosan nanoparticles by W/O emulsions. Int J Biol Macromol 50:438–443PubMedCrossRefGoogle Scholar
  121. Xu N, Gu J, Zhu Y, Wen H, Ren Q, Chen J (2011) Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int J Nanomedicine 6:905–913PubMedPubMedCentralCrossRefGoogle Scholar
  122. Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, Deng F (2009) Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technol 191:13–20CrossRefGoogle Scholar
  123. Yogasundaram H, Bahniuk MS, Singh H-D, Aliabadi HM, Uludağ H, Unsworth LD (2012) BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery. Int J Biomater 2012:584060. doi: 10.1155/2012/584060 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yuan H, Bao X, Du YZ, You J, Hu FQ (2012) Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery. Int J Nanomedicine 7:5119–5128PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yuan X, Shah BA, Kotadia NK, Li J, Gu H, Wu Z (2010) The development and mechanism studies of cationic chitosan-modified biodegradable PLGA nanoparticles for efficient siRNA drug delivery. Pharm Res 27:1285–1295PubMedCrossRefGoogle Scholar
  126. Yuan XB, Yuan YB, Jiang W, Liu J, Tian EJ, Shun HM, Huang DH, Yuan XY, Li H, Sheng J (2008) Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 349:241–248PubMedCrossRefGoogle Scholar
  127. Zabaleta V, Ponchel G, Salman H, Agüeros M, Vauthier C, Irache JM (2012) Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: permeability and pharmacokinetic study. Eur J Pharm Biopharm 81:514–523PubMedCrossRefGoogle Scholar
  128. Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J (2012) Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 45:632–638PubMedCrossRefGoogle Scholar
  129. Zhao L, Zhu B, Jia Y, Hou W, Su C (2013) Preparation of biocompatible carboxymethyl chitosan nanoparticles for delivery of antibiotic drug. Biomed Res Int 2013:236469. doi: 10.1155/2013/236469 PubMedPubMedCentralGoogle Scholar
  130. Zhou W, Wang Y, Jian J, Song S (2013) Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomedicine 8:3715–3728PubMedPubMedCentralGoogle Scholar
  131. Zweers MLT, Engbers GHM, Grijpma DW, Feijen J (2006) Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles. J Control Release 114:317–324PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculté de Pharmacie de l’Université Paris Descartes, Unité de Technologies Chimiques et Biologiques pour la Santé UTCBSCNRS UMR8258 – Inserm U1022Paris Cedex 06France
  2. 2.Institut Galien Paris Sud, UMR CNRS 8612, Univ. Paris Sud, Université Paris-SaclayChâtenay-MalabryFrance

Personalised recommendations