Associating Drugs with Polymer Nanoparticles: A Challenge

  • Christelle ZandanelEmail author
  • Christine Charrueau


Conditions to achieve drug association with polymer nanoparticles are examined in this chapter. The different types of interactions and modes of association were considered using examples taken among 12 drugs that were associated with different types of nanoparticles using different approaches. The drugs were selected to represent the various properties of active pharmaceutical ingredient (API) varying from their lipophilicity and hydrophilicity and their low-or high-molecular weights. Strategies developed to enhance performance of drug loading are discussed in relation with the different methods used to associate drugs with polymer nanoparticles.


Active pharmaceutical ingredient Adsorption Drug loading Association Covalent bonding Electrostatic interactions Entrapment Hydrophobic interactions Hydrophobic drugs Hydrophilic drugs Polymer nanoparticles Small molecules Macromolecules 


  1. Abeylath SC, Amiji MM (2011) “Click” synthesis of dextran macrostructures for combinatorial-designed self-assembled nanoparticles encapsulating diverse anticancer therapeutics. Bioorg Med Chem 19:6167–6173PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aboubakar M, Puisieux F, Couvreur P, Deyme M, Vauthier C (1999) Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J Biomed Mater Res 47:568–576Google Scholar
  3. Acharya S, Sahoo SK (2011) Sustained targeting of Bcr-Abl+ leukemia cells by synergistic action of dual drug loaded nanoparticles and its implication for leukemia therapy. Biomaterials 32:5643–5662PubMedCrossRefGoogle Scholar
  4. Agüeros M, Ruiz-Gatón L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G et al (2009) Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 38:405–413PubMedCrossRefGoogle Scholar
  5. Agüeros M, Espuelas S, Esparza I, Calleja P, Peñuelas I, Ponchel G et al (2011) Cyclodextrin-poly(anhydride) nanoparticles as new vehicles for oral drug delivery. Expert Opin Drug Deliv 8:721–734PubMedCrossRefGoogle Scholar
  6. Akbarzadeh A, Mikaeili H, Zarghami N, Mohammad R, Barkhordari A, Davaran S (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomed 7:511–526Google Scholar
  7. Aksungur P, Demirbilek M, Denkbaş EB, Vandervoort J, Ludwig A, Unlü N (2011) Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151:286–294PubMedCrossRefGoogle Scholar
  8. Al Khouri Fallouh N, Roblot-Treupel L, Fessi H, Devissaguet JP, Puisieux F (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm 28:125–132CrossRefGoogle Scholar
  9. Alam N, Khare V, Dubey R, Saneja A, Kushwaha M, Singh G et al (2014) Biodegradable polymeric system for cisplatin delivery: development, in vitro characterization and investigation of toxicity profile. Mater Sci Eng C Mater Biol Appl 1(38):85–93CrossRefGoogle Scholar
  10. Albert A (1958) Chemical aspects of selective toxicity. Nature 182:421–423PubMedCrossRefGoogle Scholar
  11. Alhareth K, Vauthier C, Gueutin C, Ponchel G, Moussa F (2011) Doxorubicin loading and in vitro release from poly(alkylcyanoacrylate) nanoparticles produced by redox radical emulsion polymerization. J Appl Polym Sci 119:816–822CrossRefGoogle Scholar
  12. Alhareth K, Vauthier C, Bourasset F, Gueutin C, Ponchel G, Moussa F (2012) Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur J Pharm Biopharm 81:453–457PubMedCrossRefGoogle Scholar
  13. Ali H, Kalashnikova I, White MA, Sherman M, Rytting E (2013) Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm 454:149–157PubMedPubMedCentralCrossRefGoogle Scholar
  14. Anirudhan TS, Sandeep S (2012) Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J Mater Chem 22:12888–12899CrossRefGoogle Scholar
  15. Ankola DD, Battisti A, Solaro R, Kumar MNVR (2010a) Nanoparticles made of multi-block copolymer of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups for oral delivery of cyclosporine A. J R Soc Interface 7:S475–S481PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ankola DD, Durbin EW, Buxton GA, Schäfer J, Bakowsky U, Kumar MNVR (2010b) Preparation, characterization and in silico modeling of biodegradable nanoparticles containing cyclosporine A and coenzyme Q10. Nanotechnology 21:065104PubMedCrossRefGoogle Scholar
  17. Ansell SM, Johnstone SA, Tardi PG, Lo L, Xie S, Shu Y et al (2008) Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates. J Med Chem 51:3288–3296PubMedCrossRefGoogle Scholar
  18. Arroo RRJ, Androutsopoulos V, Patel A, Surichan S, Wilsher N, Potter GA (2008) Phytoestrogens as natural prodrugs in cancer prevention: a novel concept. Phytochem Rev 7:431–443CrossRefGoogle Scholar
  19. Aryal S, Hu C-MJ, Zhang L (2010) Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 4:251–258PubMedPubMedCentralCrossRefGoogle Scholar
  20. Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641PubMedCrossRefGoogle Scholar
  21. Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25:471–476PubMedCrossRefGoogle Scholar
  22. Belbella A, Vauthier C, Fessi H, Devissaguet J-P, Puisieux F (1996) In vitro degradation of nanospheres from poly(d,l-lactides) of different molecular weights and polydispersities. Int J Pharm 129:95–102CrossRefGoogle Scholar
  23. Bonelli P, Tuccillo FM, Federico A, Napolitano M, Borrelli A, Melisi D et al (2012) Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations. Int J Nanomed 7:5683–5691CrossRefGoogle Scholar
  24. Cao L, Luo J, Tu K, Wang L-Q, Jiang H (2014) Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf B Biointerfaces 115:212–218PubMedCrossRefGoogle Scholar
  25. Cavalli R, Donalisio M, Civra A, Ferruti P, Ranucci E, Trotta F et al (2009) Enhanced antiviral activity of Acyclovir loaded into beta-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. J Control Release 137:116–122PubMedCrossRefGoogle Scholar
  26. Chaudhury A, Das S (2010) Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 12:10–20PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen S, Zhao D, Li F, Zhuo R-X, Cheng S-X (2012) Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Adv 2:1820–1826. doi: 10.1039/C1RA00527H CrossRefGoogle Scholar
  28. Chen Y, Yang W, Chang B, Hu H, Fang X, Sha X (2013) In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Eur J Pharm Biopharm 85(3 Pt A):406–412. doi: 10.1016/j.ejpb.2013.06.015 PubMedCrossRefGoogle Scholar
  29. Cheng K, Lim L-Y (2004) Insulin-loaded calcium pectinate nanoparticles: effects of pectin molecular weight and formulation pH. Drug Dev Ind Pharm 30:359–367PubMedCrossRefGoogle Scholar
  30. Cheng WP, Gray AI, Tetley L, Hang TLB, Schätzlein AG, Uchegbu IF (2006) Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7:1509–1520PubMedCrossRefGoogle Scholar
  31. Cheow WS, Hadinoto K (2011) Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf, B 85:214–220CrossRefGoogle Scholar
  32. Cheow WS, Hadinoto K (2012) Self-assembled amorphous drug-polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J Colloid Interface Sci 367:518–526PubMedCrossRefGoogle Scholar
  33. Cournarie F, Chéron M, Besnard M, Vauthier C (2004) Evidence for restrictive parameters in formulation of insulin-loaded nanocapsules. Eur J Pharm Biopharm 57:171–179PubMedCrossRefGoogle Scholar
  34. Csaba N, Köping-Höggård M, Alonso MJ (2009) Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm 382:205–214PubMedCrossRefGoogle Scholar
  35. Cui F, Shi K, Zhang L, Tao A, Kawashima Y (2006) Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release 114:242–250PubMedCrossRefGoogle Scholar
  36. Cui Y, Xu Q, Chow PK-H, Wang D, Wang C-H (2013) Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 34:8511–8520. doi: 10.1016/j.biomaterials.2013.07.075 PubMedCrossRefGoogle Scholar
  37. Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (2010) Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett 10:1477–1480PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD et al (2008) Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol 28:820–826PubMedPubMedCentralCrossRefGoogle Scholar
  39. D’Souza AJM, Topp EM (2004) Release from polymeric prodrugs: Linkages and their degradation. J Pharm Sci 93:1962–1979PubMedCrossRefGoogle Scholar
  40. da Silveira AM, Ponchel G, Puisieux F, Duchêne D (1998) Combined poly(isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm Res 15:1051–1055CrossRefGoogle Scholar
  41. Damgé C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251PubMedCrossRefGoogle Scholar
  42. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 161:505–522PubMedCrossRefGoogle Scholar
  43. Das N, Dhanawat M, Dash B, Nagarwal RC, Shrivastava SK (2010) Codrug: an efficient approach for drug optimization. Eur J Pharm Sci 23(41):571–588CrossRefGoogle Scholar
  44. Das S, Jagan L, Isiah R, Rajesh B, Backianathan S, Subhashini J (2011) Nanotechnology in oncology: characterization and in vitro release kinetics of cisplatin-loaded albumin nanoparticles: implications in anticancer drug delivery. Indian J Pharmacol 43:409–413PubMedPubMedCentralCrossRefGoogle Scholar
  45. Daus S, Heinze T (2010) Xylan-based nanoparticles: prodrugs for ibuprofen release. Macromol Biosci 10:211–220PubMedCrossRefGoogle Scholar
  46. De Martimprey H, Bertrand J-R, Malvy C, Couvreur P, Vauthier C (2010) New core-shell nanoparticules for the intravenous delivery of siRNA to experimental thyroid papillary carcinoma. Pharm Res 27:498–509PubMedCrossRefGoogle Scholar
  47. De Matos MBC, Piedade AP, Alvarez-Lorenzo C, Concheiro A, Braga MEM, de Sousa HC (2013) Dexamethasone-loaded poly(ε-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. Int J Pharm 18(456):269–281CrossRefGoogle Scholar
  48. de Miguel L, Popa I, Noiray M, Caudron E, Arpinati L, Desmaele D et al (2014) Osteotropic polypeptide nanoparticles with dual hydroxyapatite binding properties and controlled cisplatin delivery. Pharm Res 32:1794–1803PubMedCrossRefGoogle Scholar
  49. De Verdière AC, Dubernet C, Nèmati F, Soma E, Appel M, Fertè J et al (1997) Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer 76:198–205PubMedCrossRefGoogle Scholar
  50. Delair T (2011) Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 78:10–18PubMedCrossRefGoogle Scholar
  51. Devi SV, Prakash T (2013) Kinetics of cisplatin release by in-vitro using poly(d,l-lactide) coated Fe3O4 nanocarriers. IEEE Trans Nanobiosci 12:60–63CrossRefGoogle Scholar
  52. Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X et al (2013) Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomed 8:845–854Google Scholar
  53. Ding D, Tang X, Cao X, Wu J, Yuan A, Qiao Q et al (2014) Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS PharmSciTech 15:213–222PubMedCrossRefGoogle Scholar
  54. Dosio F, Reddy LH, Ferrero A, Stella B, Cattel L, Couvreur P (2010) Novel nanoassemblies composed of squalenoyl-paclitaxel derivatives: synthesis, characterization, and biological evaluation. Bioconjug Chem 21:1349–1361PubMedCrossRefGoogle Scholar
  55. Ebrahimi Shahmabadi H, Movahedi F, Koohi Moftakhari Esfahani M, Alavi SE, Eslamifar A, Mohammadi Anaraki G et al (2014) Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma. Tumour Biol 35:4799–4806. doi: 10.1007/s13277-014-1630-9 PubMedCrossRefGoogle Scholar
  56. Elkheshen SA, Mobarak DH, Salah S, Essam T (2013) Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of the formulation variables. J Pharm Res Opin 3:72–81Google Scholar
  57. Etrych T, Šírová M, Starovoytova L, Říhová B, Ulbrich K (2010) HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release. Mol Pharm 7:1015–1026PubMedCrossRefGoogle Scholar
  58. Fang J-Y, Al-Suwayeh SA (2012) Nanoparticles as delivery carriers for anticancer prodrugs. Expert Opin Drug Deliv 9:657–669PubMedCrossRefGoogle Scholar
  59. Florent J-C, Monneret C (2008) Doxorubicin conjugates for selective delivery to tumors. Top Curr Chem 283:99–140PubMedCrossRefGoogle Scholar
  60. Fratoddi I, Venditti I, Cametti C, Palocci C, Chronopoulou L, Marino M et al (2012) Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf B Biointerfaces 93:59–66PubMedCrossRefGoogle Scholar
  61. Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H (2005) Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 25:357–367PubMedCrossRefGoogle Scholar
  62. Gate L, Vauthier C, Couvreur P, Tew KD, Tapiero H (2001) Glutathione loaded poly-(isobutylcyanoacrylate) nanoparticles and liposomes: Comparative effects in murine erythroleukemia and macrophage-like cells. STP Pharma Sci 11:355–361Google Scholar
  63. Gaudana R, Parenky A, Vaishya R, Samanta SK, Mitra AK (2011) Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation. J Microencapsul 28:10–20PubMedCrossRefGoogle Scholar
  64. Giger EV, Castagner B, Räikkönen J, Mönkkönen J, Leroux J-C (2013) siRNA transfection with calcium phosphate nanoparticles stabilized with PEGylated chelators. Adv Healthc Mater 2:134–144. doi: 10.1002/adhm.201200088 PubMedCrossRefGoogle Scholar
  65. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gökçe EH, Sandri G, Eğrilmez S, Bonferoni MC, Güneri T, Caramella C (2009) Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res 34:996–1003PubMedCrossRefGoogle Scholar
  67. Gu J, Su S, Zhu M, Li Y, Zhao W, Duan Y et al (2012) Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Microporous Mesoporous Mater 161:160–167CrossRefGoogle Scholar
  68. Gu Y, Zhong Y, Meng F, Cheng R, Deng C, Zhong Z (2013) Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules 14:2772–2780PubMedCrossRefGoogle Scholar
  69. Guo H, Lai Q, Wang W, Wu Y, Zhang C, Liu Y et al (2013a) Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int J Pharm 451:1–11PubMedCrossRefGoogle Scholar
  70. Guo H, Zhang D, Li C, Jia L, Liu G, Hao L et al (2013b) Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm 458:31–38. doi: 10.1016/j.ijpharm.2013.10.020 PubMedCrossRefGoogle Scholar
  71. Guo S, Wang Y, Miao L, Xu Z, Lin CM, Zhang Y et al (2013c) Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 7:9896–9904PubMedPubMedCentralCrossRefGoogle Scholar
  72. Guo S, Miao L, Wang Y, Huang L (2014) Unmodified drug used as a material to construct nanoparticles: delivery of cisplatin for enhanced anti-cancer therapy. J Control Release 174:137–142. doi: 10.1016/j.jconrel.2013.11.019 PubMedCrossRefGoogle Scholar
  73. Haddadi A, Elamanchili P, Lavasanifar A, Das S, Shapiro J, Samuel J (2008) Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A 84:885–898PubMedCrossRefGoogle Scholar
  74. Haroun AA, El-Halawany NR, Loira-Pastoriza C, Maincent P (2014) Synthesis and in vitro release study of ibuprofen-loaded gelatin graft copolymer nanoparticles. Drug Dev Ind Pharm 40:61–65. doi: 10.3109/03639045.2012.746359 PubMedCrossRefGoogle Scholar
  75. Hasanovic A, Zehl M, Reznicek G, Valenta C (2009) Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol 61:1609–1616PubMedCrossRefGoogle Scholar
  76. He X, Hai L, Su J, Wang K, Wu X (2011) One-pot synthesis of sustained-released doxorubicin silica nanoparticles for aptamer targeted delivery to tumor cells. Nanoscale 3:2936–2942PubMedCrossRefGoogle Scholar
  77. He C, Yin L, Tang C, Yin C (2013) Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials 34:2843–2854PubMedCrossRefGoogle Scholar
  78. Hermans K, Weyenberg W, Ludwig A (2010) The effect of HPβCD on Cyclosporine A in-vitro release from PLGA nanoparticles. J Control Release 148:e40–e41PubMedCrossRefGoogle Scholar
  79. Hermans K, Van den Plas D, Everaert A, Weyenberg W, Ludwig A (2012) Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles. Eur J Pharm Biopharm 82:27–35PubMedCrossRefGoogle Scholar
  80. Hillaireau H, Le Doan T, Appel M, Couvreur P (2006) Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Control Release 116:346–352PubMedCrossRefGoogle Scholar
  81. Hou J, Shang J, Jiao C, Jiang P, Xiao H, Luo L et al (2013) A core cross-linked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency. Macromol Biosci 13:954–965PubMedCrossRefGoogle Scholar
  82. Hua M-Y, Yang H-W, Chuang C-K, Tsai R-Y, Chen W-J, Chuang K-L et al (2010) Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31(28):7355–7363PubMedCrossRefGoogle Scholar
  83. Huang TL, Székács A, Uematsu T, Kuwano E, Parkinson A, Hammock BD (1993) Hydrolysis of carbonates, thiocarbonates, carbamates, and carboxylic esters of α-naphthol, β-naphthol, and p-nitrophenol by human, rat, and mouse liver carboxylesterases. Pharm Res 10:639–648PubMedCrossRefGoogle Scholar
  84. Jäger A, Gromadzki D, Jäger E, Giacomelli FC, Kozlowska A, Kobera L et al (2012) Novel “soft” biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system. Soft Matter 8:4343–4354CrossRefGoogle Scholar
  85. Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13:5043–5054PubMedCrossRefGoogle Scholar
  86. Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5:77. doi: 10.3389/fphar.2014.00077 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Jiang B, Hu L, Gao C, Shen J (2005) Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int J Pharm 304:220–230PubMedCrossRefGoogle Scholar
  88. Jiang W, Sun H-M, Li X-R, Yuan X-B, Wang Y-Q, Zhang S-X et al (2009) Combined rapamycin eye drop in nanometer vector and poly (lactic acid) wafers of cyclosporine A effectively prevents high-risk corneal allograft rejection in rabbits. Zhonghua Yan Ke Za Zhi 45:550–555PubMedGoogle Scholar
  89. Jiang X, Xin H, Sha X, Gu J, Jiang Y, Law K et al (2011) PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation. Int J Pharm 420:385–394PubMedCrossRefGoogle Scholar
  90. Jin Y (2007) Effect of temperature on the state of the self-assembled nanoparticles prepared from an amphiphilic lipid derivative of acyclovir. Colloids Surf B 54:124–125CrossRefGoogle Scholar
  91. Johnstone TC, Lippard SJ (2013) The effect of ligand lipophilicity on the nanoparticle encapsulation of Pt(IV) prodrugs. Inorg Chem 52:9915–9920. doi: 10.1021/ic4010642 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Jung SH, Lim DH, Jung SH, Lee JE, Jeong K-S, Seong H et al (2009) Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 37:313–320PubMedCrossRefGoogle Scholar
  93. Kamel AO, Awad GAS, Geneidi AS, Mortada ND (2009) Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS PharmSciTech 10:1427–1436PubMedPubMedCentralCrossRefGoogle Scholar
  94. Karavana SY, Gökçe EH, Rençber S, Özbal S, Pekçetin C, Güneri P et al (2012) A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int J Nanomed 7:5693–5704CrossRefGoogle Scholar
  95. Kenyon NJ, Bratt JM, Lee J, Luo J, Franzi LM, Zeki AA et al (2013) Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One 8:e77730. doi: 10.1371/journal.pone.0077730 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR et al (2011) Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 152:76–83PubMedPubMedCentralCrossRefGoogle Scholar
  97. Kim J-K, Howard MD, Dziubla TD, Rinehart JJ, Jay M, Lu X (2011a) Uniformity of drug payload and its effect on stability of solid lipid nanoparticles containing an ester prodrug. ACS Nano 5:209–216PubMedCrossRefGoogle Scholar
  98. Kim M-S, Kim J-S, Park HJ, Cho WK, Cha K-H, Hwang S-J (2011b) Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomed 6:2997–3009Google Scholar
  99. Kopecek J, Kopecková P (2010) HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 62:122–149PubMedCrossRefGoogle Scholar
  100. Lai J, Lu Y, Yin Z, Hu F, Wu W (2010) Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles. Int J Nanomed 5:13–23Google Scholar
  101. Lambert G, Fattal E, Pinto-Alphandary H, Gulik A, Couvreur P (2000) Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res 17:707–714PubMedCrossRefGoogle Scholar
  102. Lavasanifar A, Samuel J, Kwon GS (2002) Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 54:169–190PubMedCrossRefGoogle Scholar
  103. Lee W, Park J, Yang EH, Suh H, Kim SH, Chung DS et al (2002) Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J Control Release 84:115–123PubMedCrossRefGoogle Scholar
  104. Lee DW, Yun K-S, Ban H-S, Choe W, Lee SK, Lee KY (2009) Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release 139:146–152PubMedCrossRefGoogle Scholar
  105. Lee Y, Graeser R, Kratz F, Geckeler KE (2011) Paclitaxel-loaded polymer nanoparticles for the reversal of multidrug resistance in breast cancer cells. Adv Funct Mater 21:4211–4218CrossRefGoogle Scholar
  106. Lee SJ, Hong G-Y, Jeong Y-I, Kang M-S, Oh J-S, Song C-E et al (2012) Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 433:121–128PubMedCrossRefGoogle Scholar
  107. Lee KD, Jeong Y-I, Kim DH, Lim G-T, Choi K-C (2013) Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer. Int J Nanomed 8:2835–2845Google Scholar
  108. Lehtovaara BC, Verma MS, Gu FX (2012) Synthesis of curdlan-graft-poly(ethylene glycol) and formulation of doxorubicin-loaded core–shell nanoparticles. J Bioact Compat Polym 27:3–17CrossRefGoogle Scholar
  109. Leobandung W, Ichikawa H, Fukumori Y, Peppas NA (2002) Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 80:357–363PubMedCrossRefGoogle Scholar
  110. Li F, Sun J, Zhu H, Wen X, Lin C, Shi D (2011) Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces 88:58–62PubMedCrossRefGoogle Scholar
  111. Li L, Bai Z, Levkin PA (2013a) Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery. Biomaterials 34(33):8504–8510PubMedCrossRefGoogle Scholar
  112. Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H (2013b) A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials 34:1391–1401PubMedCrossRefGoogle Scholar
  113. Li H, Bian S, Huang Y, Liang J, Fan Y, Zhang X (2014a) High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J Biomed Mater Res A 102:150–159. doi: 10.1002/jbm.a.34680 PubMedCrossRefGoogle Scholar
  114. Li N-N, Zheng B-N, Lin J-T, Zhang L-M (2014b) New heparin-indomethacin conjugate with an ester linkage: synthesis, self aggregation and drug delivery behavior. Mater Sci Eng C Mater Biol Appl 34:229–235PubMedCrossRefGoogle Scholar
  115. Lodha A, Lodha M, Patel A, Chaudhuri J, Dalal J, Edwards M et al (2012) Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A. J Pharm Bioallied Sci 4(Suppl 1):S92–S94PubMedPubMedCentralCrossRefGoogle Scholar
  116. Lundberg BB (2011) Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel. Int J Pharm 408:208–212PubMedCrossRefGoogle Scholar
  117. Lv P-P, Wei W, Yue H, Yang T-Y, Wang L-Y, Ma G-H (2011) Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 12:4230–4239PubMedCrossRefGoogle Scholar
  118. Lv S, Li M, Tang Z, Song W, Sun H, Liu H et al (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342PubMedCrossRefGoogle Scholar
  119. Ma P, Mumper RJ (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4:1000164PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ma X, Teh C, Zhang Q, Borah P, Choong C, Korzh V et al (2014) Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin. Antioxid Redox Signal 21:707–722. doi: 10.1089/ars.2012.5076 PubMedCrossRefGoogle Scholar
  121. Maksimenko A, Dosio F, Mougin J, Ferrero A, Wack S, Reddy LH et al (2014) A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc Natl Acad Sci USA 111:E217–E226PubMedPubMedCentralCrossRefGoogle Scholar
  122. Malhotra M, Tomaro-Duchesneau C, Prakash S (2013) Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 34:1270–1280PubMedCrossRefGoogle Scholar
  123. Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA et al (2013) Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 9:474–491PubMedGoogle Scholar
  124. Mansouri M, Pouretedal HR, Vosoughi V (2011) Preparation and characterization of ibuprofen nanoparticles by using solvent/antisolvent precipitation. Open Conf Proc J 2:88–94CrossRefGoogle Scholar
  125. Memişoğlu E, Bochot A, Ozalp M, Sen M, Duchêne D, Hincal AA (2003) Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm Res 20:117–125PubMedCrossRefGoogle Scholar
  126. Meunier B (2008) Hybrid molecules with a dual mode of action: dream or reality?†. Acc Chem Res 41:69–77PubMedCrossRefGoogle Scholar
  127. Mobarak DH, Salah S, Elkheshen SA (2014) Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of technique and process variables. Pharm Dev Technol 19:891–900PubMedCrossRefGoogle Scholar
  128. Nahar M, Mishra D, Dubey V, Jain NK (2008) Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine 4(3):252–261PubMedGoogle Scholar
  129. Nakarani M, Patel P, Patel J, Patel P, Murthy RSR, Vaghani SS (2010) Cyclosporine A-nanosuspension: formulation, characterization and in vivo comparison with a marketed formulation. Sci Pharm 78:345–361PubMedPubMedCentralCrossRefGoogle Scholar
  130. Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K et al (2014) Sequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater 10:2112–2124PubMedCrossRefGoogle Scholar
  131. Némati F, Dubernet C, Fessi H, Colin de Verdière A, Poupon MF, Puisieux F et al (1996) Reversion of multidrug resistance using nanoparticles in vitro: Influence of the nature of the polymer. Int J Pharm 138:237–246CrossRefGoogle Scholar
  132. Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM (2007) Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release 124:163–171PubMedCrossRefGoogle Scholar
  133. Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65:1667–1685PubMedPubMedCentralCrossRefGoogle Scholar
  134. Oliveira RR, Ferreira FS, Cintra ER, Branquinho LC, Bakuzis AF, Lima EM (2012) Magnetic nanoparticles and rapamycin encapsulated into polymeric nanocarriers. J Biomed Nanotechnol 8:193–201PubMedCrossRefGoogle Scholar
  135. Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K et al (2012) Solid lipid based nanocarriers: an overview. Acta Pharm 62:433–472PubMedCrossRefGoogle Scholar
  136. Park M-J, Balakrishnan P, Yang S-G (2013) Polymeric nanocapsules with SEDDS oil-core for the controlled and enhanced oral absorption of cyclosporine. Int J Pharm 441:757–764PubMedCrossRefGoogle Scholar
  137. Parrott MC, Finniss M, Luft JC, Pandya A, Gullapalli A, Napier ME et al (2012) Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J Am Chem Soc 134:7978–7982PubMedPubMedCentralCrossRefGoogle Scholar
  138. Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383PubMedCrossRefGoogle Scholar
  139. Patel PJ, Gohel MC, Acharya SR (2014) Exploration of statistical experimental design to improve entrapment efficiency of acyclovir in poly(d,l) lactide nanoparticles. Pharm Dev Technol 19:200–212PubMedCrossRefGoogle Scholar
  140. Perret F, Duffour M, Chevalier Y, Parrot-Lopez H (2013) Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir. Eur J Pharm Biopharm 83:25–32PubMedCrossRefGoogle Scholar
  141. Pilapong C, Keereeta Y, Munkhetkorn S, Thongtem S, Thongtem T (2013) Enhanced doxorubicin delivery and cytotoxicity in multidrug resistant cancer cells using multifunctional magnetic nanoparticles. Colloids Surf B Biointerfaces 113C:249–253Google Scholar
  142. Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9PubMedCrossRefGoogle Scholar
  143. Rahman Z, Zidan AS, Habib MJ, Khan MA (2010) Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett–Burman design. Int J Pharm 389:186–194PubMedCrossRefGoogle Scholar
  144. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T et al (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270PubMedCrossRefGoogle Scholar
  145. Reix N, Parat A, Seyfritz E, Van der Werf R, Epure V, Ebel N et al (2012) In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles. Int J Pharm 437:213–220PubMedCrossRefGoogle Scholar
  146. Ren F, Chen R, Wang Y, Sun Y, Jiang Y, Li G (2011) Paclitaxel-loaded poly(n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res 28:897–906PubMedCrossRefGoogle Scholar
  147. Ribeiro TG, Chavez-Fumagalli MA, Valadares DG, Franca JR, Rodrigues LB, Duarte MC et al (2014) Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomed 9:877–890CrossRefGoogle Scholar
  148. Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J et al (2012) Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 9:2103–2110PubMedPubMedCentralCrossRefGoogle Scholar
  149. Saengkrit N, Sanitrum P, Woramongkolchai N, Saesoo S, Pimpha N, Chaleawlert-Umpon S et al (2012) The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydr Polym 90:1323–1329PubMedCrossRefGoogle Scholar
  150. Sangster J (1989) Octanol–water partition coefficients of simple organic compounds. J Phys Chem Ref Data 18:1111–1229CrossRefGoogle Scholar
  151. Shady SF, Gaines P, Garhwal R, Leahy C, Ellis E, Crawford K et al (2013) Synthesis and characterization of pullulan-polycaprolactone core-shell nanospheres encapsulated with ciprofloxacin. J Biomed Nanotechnol 9:1644–1655PubMedCrossRefGoogle Scholar
  152. Shi Y, Goodisman J, Dabrowiak JC (2013) Cyclodextrin capped gold nanoparticles as a delivery vehicle for a prodrug of cisplatin. Inorg Chem 52:9418–9426. doi: 10.1021/ic400989v PubMedCrossRefGoogle Scholar
  153. Singh Y, Palombo M, Sinko PJ (2008) Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 15:1802–1826PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sohn JS, Jin JI, Hess M, Jo BW (2010) Polymer prodrug approaches applied to paclitaxel. Polym Chem 1:778–792CrossRefGoogle Scholar
  155. Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21:1–7PubMedCrossRefGoogle Scholar
  156. Son YJ, Jang J-S, Cho YW, Chung H, Park R-W, Kwon IC et al (2003) Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release 91:135–145PubMedCrossRefGoogle Scholar
  157. Sozio P, D’Aurizio E, Iannitelli A, Cataldi A, Zara S, Cantalamessa F et al (2010) Ibuprofen and lipoic acid diamides as potential codrugs with neuroprotective activity. Arch Pharm (Weinheim) 343:133–142CrossRefGoogle Scholar
  158. Sun C-Y, Dou S, Du J-Z, Yang X-Z, Li Y-P, Wang J (2014) Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy. Adv Healthc Mater 3:261–272. doi: 10.1002/adhm.201300091 PubMedCrossRefGoogle Scholar
  159. Sung H-W, Sonaje K, Liao Z-X, Hsu L-W, Chuang E-Y (2012) pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 45:619–629PubMedCrossRefGoogle Scholar
  160. Svartz N (1942) Salazopyrin, a new sulfanilamide preparation. A. Therapeutic results in rheumatic polyarthritis. B. Therapeutic results in ulcerative colitis. C. Toxic manifestations in treatment with sulfanilamide preparations. Acta Med Scand 110:577–598CrossRefGoogle Scholar
  161. Tahara K, Yamamoto H, Hirashima N, Kawashima Y (2010) Chitosan-modified poly(d,l-lactide-co-glycolide) nanospheres for improving siRNA delivery and gene-silencing effects. Eur J Pharm Biopharm 74:421–426PubMedCrossRefGoogle Scholar
  162. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater Weinheim 24(12):1504–1534PubMedCrossRefGoogle Scholar
  163. Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D (2013) Mitochondrial delivery of doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm Res 30:2832–2842PubMedCrossRefGoogle Scholar
  164. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16PubMedCrossRefGoogle Scholar
  165. Toub N, Bertrand J-R, Tamaddon A, Elhamess H, Hillaireau H, Maksimenko A et al (2006) Efficacy of siRNA nanocapsules targeted against the EWS–Fli1 oncogene in Ewing sarcoma. Pharm Res 23:892–900PubMedCrossRefGoogle Scholar
  166. Trivedi R, Kompella UB (2010) Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomed (Lond) 5:485–505CrossRefGoogle Scholar
  167. Tzeng SY, Yang PH, Grayson WL, Green JJ (2011) Synthetic poly(ester amine) and poly(amido amine) nanoparticles for efficient DNA and siRNA delivery to human endothelial cells. Int J Nanomed 6:3309–3322Google Scholar
  168. Uccello-Barretta G, Balzano F, Aiello F, Senatore A, Fabiano A, Zambito Y (2014) Mucoadhesivity and release properties of quaternary ammonium-chitosan conjugates and their nanoparticulate supramolecular aggregates: an NMR investigation. Int J Pharm 461:489–494PubMedCrossRefGoogle Scholar
  169. Van de Ven H, Paulussen C, Feijens PB, Matheeussen A, Rombaut P, Kayaert P et al (2012) PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and Am Bisome. J Control Release 161:795–803PubMedCrossRefGoogle Scholar
  170. Varenne F, Makky A, Gaucher-Delmas M, Violleau F, Vauthier C (2016) Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res 33:1220–1234. doi: 10.1007/S11095-016-1867-7
  171. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058PubMedCrossRefGoogle Scholar
  172. Vauthier C, Zandanel C, Ramon AL (2013) Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interface Sci 18:406–418CrossRefGoogle Scholar
  173. Verma RK, Pandya S, Misra A (2011) Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol 7:118–120PubMedCrossRefGoogle Scholar
  174. Vrignaud S, Benoit J-P, Saulnier P (2011) Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 32:8593–8604PubMedCrossRefGoogle Scholar
  175. Vrudhula VM, MacMaster JF, Li Z, Kerr DE, Senter PD (2002) Reductively activated disulfide prodrugs of paclitaxel. Bioorg Med Chem Lett 12:3591–3594PubMedCrossRefGoogle Scholar
  176. Wang Y, Xin D, Liu K, Zhu M, Xiang J (2009) Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug Chem 20:2214–2221PubMedCrossRefGoogle Scholar
  177. Wang J, Feng S-S, Wang S, Chen Z-Y (2010) Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment. Int J Pharm 400:194–200PubMedCrossRefGoogle Scholar
  178. Wang T, Zhang C, Liang XJ, Liang W, Wu Y (2011a) Hydroxypropyl-β-cyclodextrin copolymers and their nanoparticles as doxorubicin delivery system. J Pharm Sci 100:1067–1079. doi: 10.1002/jps.22352 PubMedCrossRefGoogle Scholar
  179. Wang B, Jiang W, Yan H, Zhang X, Yang L, Deng L et al (2011b) Novel PEG-graft-PLA nanoparticles with the potential for encapsulation and controlled release of hydrophobic and hydrophilic medications in aqueous medium. Int J Nanomed 6:1443–1451Google Scholar
  180. Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J (2011c) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5:3679–3692PubMedCrossRefGoogle Scholar
  181. Wang H, Zhao Y, Wu Y, Hu Y, Nan K, Nie G et al (2011d) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32:8281–8290PubMedCrossRefGoogle Scholar
  182. Wang W, Zhou F, Ge L, Liu X, Kong F (2012a) Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection. Int J Nanomed 7:2513–2522Google Scholar
  183. Wang X, Chen C, Huo D, Qian H, Ding Y, Hu Y et al (2012b) Synthesis of β-cyclodextrin modified chitosan–poly(acrylic acid) nanoparticles and use as drug carriers. Carbohydr Polym 90:361–369PubMedCrossRefGoogle Scholar
  184. Wang Y, Liu P, Qiu L, Sun Y, Zhu M, Gu L et al (2013) Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials 34:4068–4077PubMedCrossRefGoogle Scholar
  185. Wang W, Zhou F, Ge L, Liu X, Kong F (2014) A promising targeted gene delivery system: folate-modified dexamethasone-conjugated solid lipid nanoparticles. Pharm Biol 52:1039–1044. doi: 10.3109/13880209.2013.876655 PubMedCrossRefGoogle Scholar
  186. Weber C, Drogoz A, David L, Domard A, Charles M-H, Verrier B, Delair T (2010) Polysaccharide-based vaccine delivery systems: macromolecular assembly, interactions with antigen presenting cells, and in vivo immunomonitoring. J Biomed Mater Res A 93:1322–1334PubMedGoogle Scholar
  187. Wong HL, Bendayan R, Rauth AM, Wu XY (2006) Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 116:275–284PubMedCrossRefGoogle Scholar
  188. Woo HN, Chung HK, Ju EJ, Jung J, Kang H-W, Lee S-W, Seo MH, Lee JS, Lee JS, Park HJ, Song SY, Jeong SY, Choi EK (2012) Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy. Int J Nanomed 7:2197–2208Google Scholar
  189. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286PubMedPubMedCentralCrossRefGoogle Scholar
  190. Xie H, She Z-G, Wang S, Sharma G, Smith JW (2012) One-Step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28:4459–4463PubMedPubMedCentralCrossRefGoogle Scholar
  191. Xie M, Shi H, Li Z, Shen H, Ma K, Li B, Shen S, Jin Y (2013) A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf B Biointerfaces 110:138–147PubMedCrossRefGoogle Scholar
  192. Xin D, Wang Y, Xiang J (2010) The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm Res 27:380–389PubMedCrossRefGoogle Scholar
  193. Xing R, Lin H, Jiang P, Qu F (2012) Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen. Colloids Surf A 403:7–14CrossRefGoogle Scholar
  194. Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W et al (2009) Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technol 191:13–20CrossRefGoogle Scholar
  195. Xu N, Gu J, Zhu Y, Wen H, Ren Q, Chen J (2011) Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int J Nanomed 6:905–913CrossRefGoogle Scholar
  196. Xu J, Ma L, Liu Y, Xu F, Nie J, Ma G (2012) Design and characterization of antitumor drug paclitaxel-loaded chitosan nanoparticles by W/O emulsions. Int J Biol Macromol 50:438–443. doi: 10.1016/j.ijbiomac.2011.12.034 PubMedCrossRefGoogle Scholar
  197. Yang CS, Khawly JA, Hainsworth DP, Chen SN, Ashton P, Guo H et al (1998) An intravitreal sustained-release triamcinolone and 5-fluorouracil codrug in the treatment of experimental proliferative vitreoretinopathy. Arch Ophthalmol 116:69–77PubMedCrossRefGoogle Scholar
  198. Yang SC, Ge HX, Hu Y, Jiang XQ, Yang CZ (2000) Doxorubicin-loaded poly(butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization. J Appl Polym Sci 78:517–526CrossRefGoogle Scholar
  199. Yang X-Z, Dou S, Wang Y-C, Long H-Y, Xiong M-H, Mao C-Q et al (2012) Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano 6:4955–4965PubMedCrossRefGoogle Scholar
  200. Yang Y, Pan D, Luo K, Li L, Gu Z (2013) Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34:8430–8443PubMedCrossRefGoogle Scholar
  201. Yao J, Zhang Y, Ramishetti S, Wang Y, Huang L (2013) Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate. J Control Release 170:414–420PubMedPubMedCentralCrossRefGoogle Scholar
  202. Yerlikaya F, Ozgen A, Vural I, Guven O, Karaagaoglu E, Khan MA et al (2013) Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J Pharm Sci 102:3748–3761PubMedCrossRefGoogle Scholar
  203. Yogasundaram H, Bahniuk MS, Singh H-D, Aliabadi HM, Uludağ H, Unsworth LD (2012) BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery. Int J Biomater 2012:584060PubMedPubMedCentralCrossRefGoogle Scholar
  204. Yu YH, Kim E, Park DE, Shim G, Lee S, Kim YB et al (2012) Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm 80(2):268–273PubMedCrossRefGoogle Scholar
  205. Yuan X-B, Yuan Y-B, Jiang W, Liu J, Tian E-J, Shun H-M, Huang DH, Yuan XY, Li H, Sheng J (2008) Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 349:241–248PubMedCrossRefGoogle Scholar
  206. Yuan H, Bao X, Du Y-Z, You J, Hu F-Q (2012) Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery. Int J Nanomed 7:5119–5128CrossRefGoogle Scholar
  207. Yuan L, Chen W, Hu J, Zhang JZ, Yang D (2013) Mechanistic study of the covalent loading of paclitaxel via disulfide linkers for controlled drug release. Langmuir 15(29):734–743CrossRefGoogle Scholar
  208. Zawilska JB, Wojcieszak J, Olejniczak AB (2013) Prodrugs: a challenge for the drug development. Pharmacol Rep 65:1–14PubMedCrossRefGoogle Scholar
  209. Zhang Z, Tian H, He Q (1998) Preparation of acyclovir-polybutylcyanoacrylate-nanoparticles by emulsion polymerization method. Hua Xi Yi Ke Da Xue Xue Bao. 29:329–333PubMedGoogle Scholar
  210. Zhang J-Y, He B, Qu W, Cui Z, Wang Y, Zhang H, Wang JC, Zhang Q (2011) Preparation of the albumin nanoparticle system loaded with both paclitaxel and sorafenib and its evaluation in vitro and in vivo. J Microencapsul 28:528–536PubMedCrossRefGoogle Scholar
  211. Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J (2012) Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 45:632–638PubMedCrossRefGoogle Scholar
  212. Zhao L, Zhu B, Jia Y, Hou W, Su C (2013) Preparation of biocompatible carboxymethyl chitosan nanoparticles for delivery of antibiotic drug. Biomed Res Int 2013:236469PubMedPubMedCentralGoogle Scholar
  213. Zhou W, Wang Y, Jian J, Song S (2013) Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomed 8:3715–3728Google Scholar
  214. Zweers MLT, Engbers GHM, Grijpma DW, Feijen J (2006) Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles. J Control Release. 114:317–324PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut Galien Paris Sud, UMR CNRS 8612Univ. Paris-Sud, Université Paris SaclayChatenay-Malabry CedexFrance
  2. 2.Faculté de Pharmacie de L’Université Paris Descartes, Unité de Technologies Chimiques et Biologiques Pour La Santé UTCBS, CNRS UMR8258 – Inserm U1022ParisFrance

Personalised recommendations