Designing Polymer Nanoparticle Nanomedicines: Potential Applications and Challenges

  • Christine VauthierEmail author


Several challenges need to be fulfilled to design polymer nanoparticles with suitable characteristics to achieve desired applications as nanomedicine. The part 3 of the book was aimed to discuss different approaches that are used to tune characteristics of nanoparticles adjusting functionalities needed to maximize the efficacy of the delivery approach. A chapter is devoted to the synthesis of polymers that are main components of the polymer nanoparticles and give several functionalities to the final nanoparticles. The different ways to achieve association of drugs and approaches that can be developed to control the release of the drug from the nanoparticles are presented in two distinct chapters. Other aspects included in this part of the book are devoted to the understanding of interactions between proteins and nanoparticles that are at the bottom of the control of the biodistribution and safety of nanoparticles. A final chapter proposes a prospective view on developments of polymer nanoparticles as tools for theranostic combining therapeutic and diagnostic functionalities. This introduction to the part 3 of the book is aimed to place these chapters in the more global prospective of designing functional nanomedicines based on polymer nanoparticles in regard with their potential applications and challenges to complete.


Polymer Colloid Chemotherapy Clinical trials Biocompatible Biodegradable Biodistribution Diagnostic Drug-ability Drug delivery Imaging Intracellular delivery Intravenous injection Mucosal administration Nucleic acids siRNA Peptides Personalized medicine Polymer Proteins Systemic activity Target cells Target tissue Theranostic Therapeutic activity Treatment 


  1. Andrieux K, Couvreur P (2009) Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood-brain barrier. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:463–474. doi: 10.1002/wnan.5 CrossRefPubMedGoogle Scholar
  2. Brambilla D, Luciani P, Leroux JC (2014) Breakthrough discoveries in drug delivery technologies: the next 30 years. J Control Release 190:9–14. doi: 10.1016/j.jconrel.2014.03.056 CrossRefPubMedGoogle Scholar
  3. Celgene (2015) ABRAXANE® Approved by European Commission for first-line treatment of patients with non-small cell lung cancer. Accessed 31 Mar 2016
  4. Celgene (2016) Abraxane for injectable suspension. Accessed 31 Mar 2016
  5. Chen N, Li Y, Ye Y, Palmisano M, Chopra R, Zhou S (2014) Pharmacokinetics and pharmacodynamics of nab-paclitaxel in patients with solid tumors: disposition kinetics and pharmacology distinct from solvent-based paclitaxel. J Clin Pharmacol 54:1097–1107. doi: 10.1002/jcph.304 CrossRefPubMedPubMedCentralGoogle Scholar
  6. (2016a) Clinical trial databasis from the U.S. National Institutes of Health. Safety study of CALAA-01 to treat solid tumor cancers. Accessed 31 Mar 2016
  7. (2016b) Clinical trial databasis from the U.S. National Institutes of Health. Efficacy and safety doxorubicin transdrug study in patients suffering from advanced hepatocellular carcinoma (ReLive). Accessed 31 Mar 2016
  8. Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450CrossRefPubMedGoogle Scholar
  9. Delplace V, Nicolas J (2015) Degradable vinyl polymers for biomedical applications. Nat Chem 7:771–784. doi: 10.1038/nchem.2343 CrossRefPubMedGoogle Scholar
  10. Ganoth A, Merimi KC, Peer D (2015) Overcoming multidrug resistance with nanomedicines. Expert Opin Drug Deliv 12:223–238. doi: 10.1517/17425247.2015.960920 CrossRefPubMedGoogle Scholar
  11. Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci 34:317–350. doi: 10.1016/j.progpolymsci.2009.01.001 CrossRefGoogle Scholar
  12. Hasjichristidis N, Hirao A, Tezuka Y, Prez FD (2011) Complex macromolecular architectures: synthesis, characterization, and self-assembly. Wiley, SingaporeCrossRefGoogle Scholar
  13. Hemant K, Raisaday A, Sivadasu P, Uniyal S, Kumar SH (2015) Cancer nanotechnology: nanoparticulate drug delivery for the treatment of cancer. Int J Pharm Pharm Sci 7:40–46Google Scholar
  14. Hristov DR, Rocks L, Kelly PM, Thomas SS, Pitek AS, Verderio P, Mahon E, Dawson KA (2015) Tuning of nanoparticle biological functionality through controlled surface chemistry and characterisation at the bioconjugated nanoparticle surface. Sci Rep 5:17040. doi: 10.1038/srep17040 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hubbell JA, Langer R (2013) Translating materials design to the clinic. Nat Mater 12:963–966. doi: 10.1038/nmat3788 CrossRefPubMedGoogle Scholar
  16. Joglekar M, Trewyn BG (2013) Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol J 8:931–945. doi: 10.1002/biot.201300073 CrossRefPubMedGoogle Scholar
  17. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977. doi: 10.1038/nmat3765 CrossRefPubMedGoogle Scholar
  18. Kang B, Opatz T, Landfester K, Wurm FR (2015) Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem Soc Rev 44:8301–8325. doi: 10.1039/c5cs00092k CrossRefPubMedGoogle Scholar
  19. Krpetić Z, Anguissola S, Garry D, Kelly PM, Dawson KA (2014) Nanomaterials: impact on cells and cell organelles. Adv Exp Med Biol 811:135–156. doi: 10.1007/978-94-017-8739-0_8 CrossRefPubMedGoogle Scholar
  20. Lane LA, Qian X, Smith AM, Nie S (2015) Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo. Annu Rev Phys Chem 66:521–547. doi: 10.1146/annurev-physchem-040513-103718 CrossRefPubMedGoogle Scholar
  21. Le Droumaguet B, Nicolas J (2010) Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym Chem 1:563–598. doi: 10.1039/B9PY00363K CrossRefGoogle Scholar
  22. Lehner R, Wang X, Wolf M, Hunziker P (2012) Designing switchable nanosystems for medical application. J Control Release 161:307–316. doi: 10.1016/j.jconrel.2012.04.040 CrossRefPubMedGoogle Scholar
  23. Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA (2012) Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release 161:164–174. doi: 10.1016/j.jconrel.2012.04.009 CrossRefPubMedGoogle Scholar
  24. Merkle H (2015) Drug delivery’s quest for polymers: where are the frontiers? Eur J Pharm Biopharm 97:293–303. doi: 10.1016/j.ejpb.2015.04.038 CrossRefPubMedGoogle Scholar
  25. Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A (2012) Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomed 7:3637–3657. doi: 10.2147/IJN.S23696 Google Scholar
  26. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed 4:99–105CrossRefGoogle Scholar
  27. Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64:1394–1416. doi: 10.1016/j.addr.2012.06.006 CrossRefPubMedGoogle Scholar
  28. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003. doi: 10.1038/nmat3776 CrossRefPubMedGoogle Scholar
  29. Nicolas J (2016) Drug-initiated synthesis of polymer prodrugs: combining simplicity and efficacy in drug delivery. Chem Mater 28:1591–1606. doi: 10.1021/acs.chemmater.5b04281 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235. doi: 10.1039/c2cs35265f CrossRefPubMedGoogle Scholar
  31. Onxeo (2016) Orphan oncology products. Accessed 31 Mar 2016
  32. Pridgen EM, Alexis F, Farokhzad OC (2015) Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv 12:1459–1473. doi: 10.1517/17425247.2015.1018175 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, Mailänder V (2015) Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16:1311–1321. doi: 10.1021/acs.biomac.5b00108 CrossRefPubMedGoogle Scholar
  34. Ryu JH, Lee S, Son S, Kim SH, Leary JF, Choi K, Kwon IC (2014) Theranostic nanoparticles for future personalized medicine. J Control Release 190:477–484. doi: 10.1016/j.jconrel.2014.04.027 CrossRefPubMedGoogle Scholar
  35. Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT (2015) Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev 44:8174–8199. doi: 10.1039/C5CS00499C CrossRefPubMedGoogle Scholar
  36. Silva AC, Lopes CM, Lobo JM, Amaral MH (2015) Delivery systems for biopharmaceuticals. Part I: nanoparticles and microparticles. Curr Pharm Biotechnol 16:940–954CrossRefPubMedGoogle Scholar
  37. Soma E, Atali P, Merle P (2012) A clinically relevant case study: the development of Livatag1 for the treatment of advanced hepatocellular carcinoma. In: Alonso MJ, Csaba NS (eds) RSC drug discovery series no. 22 nanostructured biomaterials for overcoming biological barriers, chap. 11. The Royal Society of Chemistry, Cambridge, pp 591–600CrossRefGoogle Scholar
  38. Thorley AJ, Tetley TD (2013) New perspectives in nanomedicine. Pharmacol Ther 140:176–185. doi: 10.1016/j.pharmthera.2013.06.008 CrossRefPubMedGoogle Scholar
  39. Tosi G, Bortot B, Ruozi B, Dolcetta D, Vandelli MA, Forni F, Severini GM (2013) Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier. Curr Med Chem 20:2212–2225CrossRefPubMedGoogle Scholar
  40. Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768. doi: 10.1021/ja910675v CrossRefPubMedGoogle Scholar
  41. Wue HY, Liu S, Wong HL (2014) Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine. 9:295–312CrossRefGoogle Scholar
  42. Xu CF, Wang J (2015) Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci 10:1–12. doi: 10.1016/j.ajps.2014.08.011 CrossRefGoogle Scholar
  43. Ye D, Dawson KA, Lynch I (2015) A TEM protocol for quality assurance of in vitro cellular barrier models and its application to the assessment of nanoparticle transport mechanisms across barriers. Analyst 140:83–97. doi: 10.1039/c4an01276c CrossRefPubMedGoogle Scholar
  44. Yu X, Jin C (2016) Application of albumin-based nanoparticles in the management of cancer. J Mater Sci Mater Med 27:4. doi: 10.1007/s10856-015-5618-9 CrossRefPubMedGoogle Scholar
  45. Zhou J, Shum KT, Burnett JC, Rossi JJ (2013) Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals (Basel) 6:85–107. doi: 10.3390/ph6010085 CrossRefGoogle Scholar
  46. Zhou Q, Sun X, Zeng L, Liu J, Zhang Z (2009) A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine 5:419–423. doi: 10.1016/j.nano.2009.01.009 PubMedGoogle Scholar
  47. Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME, Yen Y (2014) Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA 111:11449–11454. doi: 10.1073/pnas.1411393111 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut Galien Paris Sud, Faculty of PharmacyUMR CNRS 8612, University of Paris-Sud, University Paris SaclayChâtenay-Malabry CedexFrance

Personalised recommendations