Advertisement

Polymer Nanoparticles for In Vivo Applications: Progress on Preparation Methods and Future Challenges

  • Christine VauthierEmail author
Chapter

Abstract

Polymer nanoparticles are one type of the arsenal of nanomedicines that are developed to improve efficacy and specificity of drug delivery and to design new contrast agents enhancing the performance of diagnostic methods based on imaging techniques. To answer the various challenges, it has lead the way to development of suitable nanoparticles. Many types of methods of preparation were proposed designing nanoparticles taking different structures and integrating various functions. The purpose of the introduction to the part I of the book devoted to the methods of preparation of polymer nanoparticles to be used as nanomedicines is to present the different types of polymer nanoparticles that were designed so far and to give an overview on their methods of preparation. It is also important to place these methodologies in a prospective view raising future challenges and bottlenecks.

Keywords

Methods Micelles Polymer nanoparticles Nanocapsules Nanospheres Nanogel Polyelectrolyte complex Self-assembling Precipitation Polymerization Emulsion Polymer solution Layer-by-layer Print Microfluidic Self-assembling Complex Spherical particles Nonspherical nanoparticles Multifunctional nanoparticles 

References

  1. Andrieux K, Couvreur P (2009) Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood-brain barrier. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:463–474. doi: 10.1002/wnan.5 CrossRefPubMedGoogle Scholar
  2. Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282. doi: 10.1146/annurev-bioeng-071812-152409 CrossRefPubMedGoogle Scholar
  3. Bekale L, Agudelo D, Tajmir-Riahi HA (2015) Effect of polymer molecular weight on chitosan-protein interaction. Colloids Surf B Biointerfaces 125:309–317. doi: 10.1016/j.colsurfb.2014.11.037 CrossRefPubMedGoogle Scholar
  4. Birrenbach G, Speiser PP (1976) Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 65:1763–1766Google Scholar
  5. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22CrossRefGoogle Scholar
  6. Cauchois O, Segura-Sanchez F, Ponchel G (2013) Molecular weight controls the elongation of oblate-shaped degradable poly(γ-benzyl-L-glutamate)nanoparticles. Int J Pharm 452:292–299. doi: 10.1016/j.ijpharm.2013.04.074 CrossRefPubMedGoogle Scholar
  7. Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9:37–52. doi: 10.1002/cmmi.1551 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65:21–23. doi: 10.1016/j.addr.2012.04.010 CrossRefPubMedGoogle Scholar
  9. Couvreur P, Kante B, Roland M, Guiot P, Baudhuin P, Speiser P (1979) Poly(cyanoacrylate) nanoparticles as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31:331–332CrossRefPubMedGoogle Scholar
  10. Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19(2):99–134CrossRefPubMedGoogle Scholar
  11. Daoud-Mahammed S, Couvreur P, Bouchemal K, Chéron M, Lebas G, Amiel C, Gref R (2009) Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen. Biomacromolecules 10:547–554. doi: 10.1021/bm801206f CrossRefPubMedGoogle Scholar
  12. de Miguel L, Popa I, Noiray M, Caudron E, Arpinati L, Desmaele D, Cebrián-Torrejón G, Doménech-Carbó A, Ponchel G (2015) Osteotropic polypeptide nanoparticles with dual hydroxyapatite binding properties and controlled cisplatin delivery. Pharm Res 32:1794–1803. doi: 10.1007/s11095-014-1576-z CrossRefPubMedGoogle Scholar
  13. Delair T (2011) Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 78:10–18. doi: 10.1016/j.ejpb.2010.12.001 CrossRefPubMedGoogle Scholar
  14. Eckmann DM, Composto RJ, Tsourkasc A, Muzykantov VR (2014) Nanogel carrier design for targeted drug delivery. J Mater Chem B. 2:8085–8097. doi: 10.1039/C4TB01141D CrossRefGoogle Scholar
  15. Ejima H, Richardson JJ, Caruso F (2013) Multivalent directed assembly of colloidal particles. Angew Chem Int Ed Engl 52:3314–3316. doi: 10.1002/anie.201209461 CrossRefPubMedGoogle Scholar
  16. Elizondo E, Veciana J, Ventosa N (2012) Nanostructuring molecular materials as particles and vesicles for drug delivery, using compressed and supercritical fluids. Nanomedicine (Lond). 7:1391–1408CrossRefPubMedGoogle Scholar
  17. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial deposition following solvent displacement. Int J Pharm 55:R1–R4. doi: 10.1016/0378-5173(89)90281-0 CrossRefGoogle Scholar
  18. Fuks G, Mayap Taloma R, Gauffre F (2011) Biohybrid block copolymers: towards functional micelles and vesicles. Chem Soc Rev 40:2475–2493. doi: 10.1039/C0CS00085J CrossRefPubMedGoogle Scholar
  19. Ganachaud F, Katz JL (2005) Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulisification as an alternative to ultrasonic and high-shear devices. Chem phys chem. 6:209–216Google Scholar
  20. Girotra P, Singh SK, Nagpal K (2013) Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 18:22–38CrossRefPubMedGoogle Scholar
  21. Graf A, McDowell A, Rades T (2009) Poly(alkylcyanoacrylate) nanoparticles for enhanced delivery of therapeutics—is there real potential? Expert Opin Drug Deliv 6:371–387. doi: 10.1517/17425240902870413 CrossRefPubMedGoogle Scholar
  22. Gref R, Amiel C, Molinard K, Daoud-Mahammed S, Sébille B, Gillet B, Beloeil JC, Ringard C, Rosilio V, Poupaert J, Couvreur P (2006) New self-assembled nanogels based on host-guest interactions: characterization and drug loading. J Control Release 111:316–324CrossRefPubMedGoogle Scholar
  23. Guan L, Rizzello L, Battaglia G (2015) Polymersomes and their applications in cancer delivery and therapy. Nanomedicine 10(17):2757–2780. doi: 10.2217/nnm.15.110 CrossRefPubMedGoogle Scholar
  24. Gurny R, Peppas N, Harrington DD, Banker GS (1981) Development of biodegradable and injectable lattices for controlled release of potent drugs. Drug Dev Ind Pharm 7:1–25CrossRefGoogle Scholar
  25. Hassani LN, Hendra F, Bouchemal K (2012) Auto-associative amphiphilic polysaccharides as drug delivery systems. Drug Discov Today 17:608–614. doi: 10.1016/j.drudis.2012.01.016 CrossRefPubMedGoogle Scholar
  26. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Del Rev 47:83–97CrossRefGoogle Scholar
  27. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 48:5418–5429. doi: 10.1002/anie.200900441 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Karnik R, Gu F, Pamela Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8:2906–2912. doi: 10.1021/nl801736q CrossRefPubMedGoogle Scholar
  29. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131CrossRefPubMedGoogle Scholar
  30. Khemtong C, Kessinger CW, Gao J (2009) Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem Commun (Camb) 24:3497–3510. doi: 10.1039/b821865j CrossRefGoogle Scholar
  31. Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331:1–10CrossRefPubMedGoogle Scholar
  32. Labouta HI, Schneider M (2010) Tailor-made biofunctionalized nanoparticles using layer-by-layer technology. Int J Pharm 395:236–242CrossRefPubMedGoogle Scholar
  33. Lee AH, Oh KT, Baik HJ, Lee BR, Oh YT, Lee DH, Lee ES (2010) Worm-like Micelles for drug delivery development of worm-like polymeric drug carriers with multiple ligands for targeting heterogeneous breast cancer cells. Bull Korean Chem Soc 31:2265–2271. doi: 10.5012/bkcs.2010.31.8.2265 CrossRefGoogle Scholar
  34. Lim JM, Bertrand N, Valencia PM, Rhee M, Langer R, Jon S, Farokhzad OC, Karnik R (2014) Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomedicine 10:401–409. doi: 10.1016/j.nano.2013.08.003 PubMedGoogle Scholar
  35. Maya S, Sarmento B, Nair A, Rejinold NS, Nair SV, Jayakumar R (2013) Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19:7203–7218CrossRefPubMedGoogle Scholar
  36. Meziani MJ, Pathak P, Desai T, Sun YP (2006) Supercritical fluid processing of nanoscale particles from biodegradable and biocompatible polymers. Ind Eng Chem Res 45:3420–3424. doi: 10.1021/ie050704n CrossRefGoogle Scholar
  37. Minost A, Delaveau J, Bolzinger MA, Fessi H, Elaissari A (2012) Nanoparticles via nanoprecipitation process. Recent Pat Drug Deliv Formul 6:250–258CrossRefPubMedGoogle Scholar
  38. Mitragotri S (2009) In drug delivery, shape does matter. Pharm Res 26:232–234. doi: 10.1007/s11095-008-9740-y CrossRefPubMedGoogle Scholar
  39. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142. doi: 10.1016/j.ijpharm.2009.10.018 CrossRefPubMedGoogle Scholar
  40. Mukhopadhyaya P, Mishrab R, Ranac D, Patit Kundua P (2012) Strategies for effective oral insulin delivery with modified chitosan nanoparticles: a review. Prog Polym Sci 37:1457–1475. doi: 10.1016/j.progpolymsci.2012.04.004 CrossRefGoogle Scholar
  41. Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64:1394–1416. doi: 10.1016/j.addr.2012.06.006 CrossRefPubMedGoogle Scholar
  42. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003. doi: 10.1038/nmat3776 CrossRefPubMedGoogle Scholar
  43. Murthy RSR, Harivardhan Reddy L (2006) Poly(alkyl cyanoacrylate) nanoparticles for delivery of anti-cancer drugs. In: Amiji MM (ed) Nanotechnology for cancer therapy (Chap 15). CRC Press, Taylor and Francis Group, Boca-Raton, pp 251–288. doi: 10.1201/9781420006636.ch15 Google Scholar
  44. Nicolas J, Couvreur P (2009) Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Nanomed Nanobiotechnol 1:111–127. doi: 10.1002/wnan.15 CrossRefGoogle Scholar
  45. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235. doi: 10.1039/c2cs35265f CrossRefPubMedGoogle Scholar
  46. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Progress Polym Sci. 30:447–477. doi: 10.1016/j.progpolymsci.2008.01.002 Google Scholar
  47. Osada K (2014) Development of functional polyplex micelles for systemic gene therapy. Polymer J 46:469–475. doi: 10.1038/pj.2014.49 CrossRefGoogle Scholar
  48. Pearson RT, Avila-Olias M, Joseph AS, Nyberg S, Battaglia G (2013) Smart polymersomes: formation, characterisation and applications. RSC Smart Mater 1(1):179–207CrossRefGoogle Scholar
  49. Pedro M, Valencia PM, Pridgen EM, Rhee M, Langer R, Farokhzad OC, Karnik R (2013) Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 7:10671–10680. doi: 10.1021/nn403370e CrossRefGoogle Scholar
  50. Perry JL, Herlihy KP, Napier ME, Desimone JM (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44:990–998. doi: 10.1021/ar2000315 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Poon Z, Chang D, Zhao X, Hammond PT (2011) Layer-by-Layer Nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5:4284–4292. doi: 10.1021/nn200876f CrossRefPubMedPubMedCentralGoogle Scholar
  52. Robertson JD, Patikarnmonthon N, Joseph AS, Battaglia G (2013) Block copolymer micelles and vesicles for drug delivery. In: Bader RA, Putnam DA (eds) Engineering polymer systems for improved drug delivery (Chap 6). Wiley, Hoboken, pp 163–188. doi: 10.1002/9781118747896.ch6 Google Scholar
  53. Rowan SJ (2009) Polymer self-assembly: Micelles make a living. Nature Mater 8:89–91. doi: 10.1038/nmat2365 CrossRefGoogle Scholar
  54. Sheth P, Sandhu H, Singhal D, Malick W, Shah N, Kislalioglu MS (2012) Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Curr Drug Deliv 9:269–284CrossRefPubMedGoogle Scholar
  55. Shiraki K, Kurinomaru T, Tomita S (2016) Wrap-and-strip technology of protein-polyelectrolyte complex for biomedical application. Curr Med Chem 23:276–289CrossRefPubMedGoogle Scholar
  56. Soma E, Atali P, Merle P (2012) A clinically relevant case study: the development of Livatag1 for the treatment of advanced hepatocellular carcinoma. In: Alonso MJ, Csaba NS (eds) RSC Drug Discovery Series No. 22 nanostructured biomaterials for overcoming biological barriers (Chap 11). The Royal Society of Chemistry, Cambridge, pp 591–600Google Scholar
  57. Sulheim E, Baghirov H, Von Haartman E, Bøe A, Åslund AKO, Mørch Y, De Lange Davies C (2016) Cellular uptale and intracellular degradation of poly(alkylcyanoacrylate) nanoparticles. J Nanobiotechol 14:1–14. doi: 10.1186/s12951-015-0156-7
  58. Sultana F, Manirujjaman, Imran-Ul-Haque MD, Arafat M, Sharmin S (2013) An overview of nanogel drug delivery system. J App Pharm Sci 3:S95–S105. doi: 10.7324/JAPS.2013.38.S15
  59. Sun YP, Meziani MJ, Pathak P, Qu L (2005) Polymeric nanoparticles from rapid expansion of supercritical fluid solution. Chemistry 11:1366–1373CrossRefPubMedGoogle Scholar
  60. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16CrossRefPubMedGoogle Scholar
  61. Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12:129–142. doi: 10.1517/17425247.2014.950564 CrossRefPubMedGoogle Scholar
  62. Valencia PM, Farokhzad OC, Karnik R, Langer R (2012) Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol 7:623–629. doi: 10.1038/nnano.2012.168 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vauthier C, Couvreur P (2000) Development of nanoparticles made of polysaccharides as novel drug carrier systems. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology (Chap. 2). Marcel Dekker Inc., New York.  10.1007/978-3-319-41421-8_21, pp 413–429
  64. Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P (2003a) Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 93:151–160CrossRefPubMedGoogle Scholar
  65. Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003b) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55:519–548CrossRefPubMedGoogle Scholar
  66. Vauthier C, Labarre D, Ponchel G (2007) Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 15:641–663CrossRefPubMedGoogle Scholar
  67. Wang Y, Merkel TJ, Chen K, Framen CA, Betts DR, DeSimone JM (2011a) Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates. Langmuir 27:524–528. doi: 10.1021/la1045095 CrossRefPubMedGoogle Scholar
  68. Wang J, Byrne JD, Napier ME, DeSimone JM (2011b) More effective nanomedicines through particle design. Small 7:1919–1931. doi: 10.1002/smll.201100442 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Weber SE (1998) Polymer micelles: an example of self-assembling polymers. J Phys Chem B 102:2618–2626. doi: 10.1021/jp980386o CrossRefGoogle Scholar
  70. Wu D, Delair T (2015) Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydr Polym 119:149–158. doi: 10.1016/j.carbpol.2014.11.042 CrossRefPubMedGoogle Scholar
  71. Yan Y, Bjommalm M, Caruso F (2014) Assembly of layer-by-layer particles and their interactions with biological systems. Chem Mater 26:452–460. doi: 10.1021/cm402126n CrossRefGoogle Scholar
  72. Yordanov G (2012) Poly(alkylcyaoacrylate) nanoparticles as drug carriers: 33 years later. Bulg J Chem 1:61–73Google Scholar
  73. Zhou Q, Sun X, Zeng L, Liu J, Zhang Z (2009) A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoaprticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine NBM 5:419–423. doi: 10.1016/j.nano.2009.01.009 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut Galien Paris Sud, Faculty of PharmacyUMR CNRS, University of Paris-Sud, University Paris SaclayChâtenay-Malabry CedexFrance

Personalised recommendations