Chemical Analysis and Characterization of Biomass for Biorefineries



The aim of this chapter is to offer different chemical analyses and characterization options for researchers or whoever is looking for an appropriate methodology to analyze results obtained in laboratory tests, especially assuming the challenge to find the best process to achieve bio-products under biorefinery concept. In this way, the information provided will be very useful to evaluate the results and moreover, to improve the research process. That is the reason why analytical techniques to characterize different lignocellulosic biomass are described with detailed data about its principles and methodology, emphasizing either physical or chemical protocols that are followed normally in research laboratories. Taking into account that lignin, cellulose, and hemicelluloses are the principal compounds of these kinds of raw materials, which in general are residues, the information is emphasized with that target of analysis. Nevertheless, as it is possible to obtain a lot of bio-products from biomass, like sugars, alcohols, aromatics, biopolymers and so on, other analytical methods are included.


Gravimetric analysis Compositional analysis Chemical characterization 


  1. AOAC (1995) AOAC official method 973.18. Fibre (acid detergent) and Lignin in animal feed. In: AOAC (ed) AOAC official methods of analysis (vol 1, Chap. 4), 16th edn. AOAC, Rockville, MD, pp 20–21Google Scholar
  2. AOAC (2002) AOAC official method 2002.04. Amylase-treated neutral detergent fiber in feeds. In: AOAC (ed) AOAC official methods of analysis, vol 85, number 6, 1st edn. AOAC, Rockville, MD, pp 20–21Google Scholar
  3. AOAC (2009) AOAC official methods Ce 2–66. Preparation of methyl esters of fatty acids. Official methods 6a. AOCS, UrbanaGoogle Scholar
  4. ASTM D1110-84 (2013) Standard test methods for water solubility of wood. ASTM International, West Conshohocken, PA.
  5. Attard TM, Rob Mcelroy C, Rezende CA, Polikarpovc I, Clarka JH, Hunt AJ (2015) Sugarcane waste as a valuable source of lipophilic molecules. Ind Crops Prod 76:95–103CrossRefGoogle Scholar
  6. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377CrossRefGoogle Scholar
  7. Ballesteros I, Oliva JM, Saez F, Ballesteros M (2001) Ethanol production by simultaneous saccharification and fermentation of olive oil extraction. Appl Biochem Biotechnol 91(93):237–252CrossRefGoogle Scholar
  8. Bian J, Peng F, Peng X-P, Xiao X, Peng P, Xu F (2014) Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydr Polym 100:211–217CrossRefGoogle Scholar
  9. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 54:519–546CrossRefGoogle Scholar
  10. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crops Prod 28:237–259CrossRefGoogle Scholar
  11. Cardoen D, Joshi P, Diels L, Sarma PM, Pant D (2015) Agriculture biomass in India: Part 1. Estimation and characterization. Resour Conserv Recy 102:39–48CrossRefGoogle Scholar
  12. Cataño Rueda EH (2009) Obtención y caracterización de nanofibras de celulosa a partir de desechos agroindustriales. Tesis Ingeniería Química, Facultad de Minas, Escuela de Procesos y Energía, Universidad Nacional de Colombia, Medellín, Colombia, p 13.
  13. Chaa L, Joly N, Lequart V, Faugeron C, Mollet JC, Martin P, Morvan H (2008) Isolation, characterization and valorization of hemicelluloses from Aristida pungens leaves as biomaterial. Carbohydr Polym 74:597–602CrossRefGoogle Scholar
  14. Chen J, Lai P, Shen H, Zhen H, Fang R (2013) Effect of extraction methods on polysaccharide of Clitocybe maxima stipe. Adv J Food Sci Technol 5(3):370–373Google Scholar
  15. Cody’s G (2016) Solid state NMR facility [Figure] recovery from.
  16. Cozzolino D, Fassio A, Fernández E (2003) Use of near infrared reflectance spectroscopy to analyze corn silage quality. Agric Téc 64(3):387–393Google Scholar
  17. Del Río JC, Lino AG, Colodette JL, Lima CF, Gutierrez A, Martínez AT, Lu F, Ralph J, Rencoret J (2015) Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenerg 81:322–338CrossRefGoogle Scholar
  18. Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin, p 613Google Scholar
  19. Foyle T, Jennings L, Mulcahy P (2007) Compositional analysis of lignocellulosic materials: evaluation of methods used for sugar analysis of waste paper and straw. Bioresour Technol 98:3026–3036CrossRefGoogle Scholar
  20. García Sánchez A, Ramos Martos N, Ballesteros E (2005) Estudio comparativo de distintas técnicas analíticas (espectroscopía de NIR y RMN y extracción mediante Soxhlet) para la determinación del contenido graso y de humedad en aceitunas y orujo de Jaén. Grasas Aceites 56(3):220–227CrossRefGoogle Scholar
  21. Godin B, Agneessens R, Gerin PA, Delcarte J (2011) Composition of structural carbohydrates in biomass: precision of a liquid chromatography method using a neutral detergent extraction and a charged aerosol detector. Talanta 85:2014–2026CrossRefGoogle Scholar
  22. Golander E (2011) Characterization and methods for extraction of extractives in spent sulphite liquor. Master of science thesis, Department of Chemical and Biological Engineering, Chalmers University of Technology, p 8.
  23. Higuchi T (1985) Lignin biosynthesis. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Orlando, FL, pp 114–160Google Scholar
  24. Horwitz W, Latimer GW (2005) Chapter 33: official methods of analysis of AOAC international, 18th edn. AOAC International, Gaithersburg, MDGoogle Scholar
  25. Huang SQ, Li JW, Wang Z, Pan HX, Chen JX, Ning ZX (2010) Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules 15:3694–3708CrossRefGoogle Scholar
  26. Kacuráková M, Wilson RH (2001) Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr Polym 44:291–303CrossRefGoogle Scholar
  27. Luque de Castro MD, García-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10CrossRefGoogle Scholar
  28. Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389CrossRefGoogle Scholar
  29. Martín Lara, María Angela. Caracterización y aplicación de biomasa residual a a la eliminación de metales pesados [in line]. Tesis doctoral Ciencia y Tecnología del Medio Ambiente. Granada. Universidad de Granada. Facultad de Ciencias, 2008. 424 p. [consulta: 20 mayo de 2015]. In:
  30. McMurry J (2012) Química orgánica 8a edición. Cengage Learning, México DFGoogle Scholar
  31. Morrison RT, Boyd RN (1998) Química Orgánica. Addison Wesley Longman, MéxicoGoogle Scholar
  32. MUÑOZ, F. J. Extracción y caracterización de la pectina obtenida a partir del fruto de dos ecotipos de cocona (Solanum sessiliflorum), en diferentes grados de madurez; a nivel de planta piloto. [In line]. Tesis Maestría en Ingeniería Agrícola. Bogotá, Colombia: Universidad Nacional de Colombia, Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola, 2011. 18 p. [Consulta: 06 de abril de 2016] In:
  33. Niño Camacho LR (2009) Implementación de diferentes técnicas analíticas para la determinación de biomasa bacterinas de cepas Psudomonas putida biodegradadoras de fenol. [en línea]. Tesis Química. Facultad de Ciencias, Escuela de Quíimica, 12Universidad Industrial de Santander, Santander, Colombia, p 19.
  34. Oliva Domínguez JM (2003) Efecto de los productos de degradación originados en la explosión por vapor de biomasa de chopo sobre Kluyveromyces marxianus. Tesis doctoral, Madrid, p 166.
  35. Oliva Dominguez, J. Miguel. Efecto de los productos de degradación originados en la explosión por vapor de biomasa de chopo sobre Kluyveromyces marxianus. [en línea]. Tesis doctoral. Madrid, 2003. 166 p. [consulta: 5 de marzo de 2015]. Disponible en:
  36. Orellana V, Rogel A (2016) Cromatografía de líquidos de alta resolución. Unidad Académica de Ciencias Químicas de la Salud, Universidad Técnica de Machala.
  37. Pérez MJ, Quishpi JA (2014) Evaluación cuantitativa de la producción de biodiesel de microalgas de lagunas de tratamiento de agua residual. Tesis Ingeniería Civil. Facultad de ingeniería, Escuela de Ingeniería Civil, Universidad de Cuenca, Cuenca, Ecuador, p 111.
  38. Pinzón ML, Cardona AM (2008) Caracterización de la cáscara de naranja para su uso como material bioadsorbente. Bistua Rev 6(1):28–37Google Scholar
  39. Sarkanen KV, Ludwig CH (1971) Lignins: occurence, formation, structure and reactions. Wiley Interscience, New York, NY, p 916Google Scholar
  40. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a) Determination of extractives in biomass. NREL/TP-510-42619. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  41. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008b) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  42. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008c) Determination of ash in biomass. NREL/TP-510-42622. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  43. Szcrbowski D, Pitarelo AP, Filho AZ, Pereira L (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101CrossRefGoogle Scholar
  44. Turrel FM, Fisher PL (1942) The proximate chemical constituents of citrus woods, with special reference to lignin. Plant Physiol 17(4):558–581CrossRefGoogle Scholar
  45. Pilnik W, Voragen AGJ (1993) Enzymes in food processing, 3rd edn. Copyright 1993 by Academic. 363 3 64. Capítulo 1: pectic enzymes in fruit and vegetable juice manufacture. p 363–392Google Scholar
  46. Wychen SV, Laurens LM (2013) Detemination of total solids and ash in alga biomass. Tech Rep NREL/TP:5100–60956Google Scholar
  47. Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energ 104:801–809CrossRefGoogle Scholar
  48. Zhang J, Deng H, Lin L, Sun Y, Pan C, Liu S (2010) Isolation and characterization of wheat straw lignin with a formic acid process. Bioresour Technol 101:2311–2316CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Energy and MechanicsAutónoma of Occidente UniversityCaliColombia
  2. 2.School of Chemical EngineeringUniversity of ValleCaliColombia

Personalised recommendations