Analytical Strategies Using Chromatographic Methodologies to Analyze Lignocellulosic Feedstocks and their Value-Added Compounds in Biorefinery Processes



Strategies for adding value to renewable production chains is a fairly frequent and important worldwide research theme. The mitigation of environmental impacts caused by the use of petroleum derivatives needs to be quickly established and to ensure the achievement of these renewable products the use of analytical platforms that can conduct experiments and processes to obtain these target compounds in a green manner is imperative. This chapter highlights the use of analytical tools, especially those related to chromatographic techniques—conventional and modern—that can be used in the characterization of lignocellulosic biomass and products obtained from biorefinery processes. The information presented is given in function of individual separation and detection techniques, but the most appropriate is to consider, when applicable, the use of different detectors in series. In many cases, the information generated is complementary and the correlation of analytical data is very important to conduct a more robust and accurate characterization study.


Lignocellulosic feedstock Biomass UHPLC Biorefinery High value-added compounds 


  1. Bairwa K, Srivastava A, Jachak SM (2014) Quantitative analysis of boeravinones in the roots of boerhaavia diffusa by UPLC/PDA. Phytochem Anal 25(5):415–420. doi: 10.1002/pca.2509 CrossRefGoogle Scholar
  2. Baldwin RP (1999) Electrochemical determination of carbohydrates: enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis. J Pharm Biomed Anal 19(1):69–81CrossRefGoogle Scholar
  3. Ball S, Bullock S, Lloyd L, Mapp K, Ewen A (2011) Analysis of carbohydrates, alcohols, and organic acids by ion-exchange chromatography. Agilent Technologies, Santa Clara, CA, Accessed Jan 2016Google Scholar
  4. Basumallick L, Rohrer J (2009) Rapid method for the estimation of total free monosaccharide content of corn stover hydrolysate using HPAE-PAD. Accessed Jan 2016
  5. Basumallick L, Rohrer J (2012) Rapid and Sensitive Determination of Biofuel Sugars by Ion Chromatography. doi: Accessed jan 2016
  6. Basumallick L, Rohrer J (2011) Determination of hydroxymethylfurfural in honey and biomass. Accessed Jan 2016
  7. Beluomini MA, da Silva JL, Stradiotto NR (2015) Determination of uronic acids in sugarcane bagasse by anion-exchange chromatography using an electrode modified with copper nanoparticles. Anal Methods 7(6):2347–2353. doi: 10.1039/c4ay03060e CrossRefGoogle Scholar
  8. Bhope SG, Gaikwad PS, Kuber VV, Patil MJ (2013) RP-HPLC method for the simultaneous quantitation of boeravinone E and boeravinone B in Boerhaavia diffusa extract and its formulation. Nat Prod Res 27(6):588–591. doi: 10.1080/14786419.2012.676550 CrossRefGoogle Scholar
  9. Bowman MJ, Dien BS, O'Bryan PJ, Sarath G, Cotta MA (2011) Selective chemical oxidation and depolymerization of switchgrass (Panicum virgatum L.) xylan with oligosaccharide product analysis by mass spectrometry. Rapid Commun Mass Spectrom 25(7):941–950. doi: 10.1002/rcm.4949 CrossRefGoogle Scholar
  10. Bozell JJ, Petersen GR (2009) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554. doi: 10.1039/b922014c CrossRefGoogle Scholar
  11. Brokl M, Hernández-Hernández O, Soria AC, Sanz ML (2011) Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. J Chromatogr A 1218(42):7697–7703. doi: 10.1016/j.chroma.2011.05.015 CrossRefGoogle Scholar
  12. Carbonell-Barrachina AA, Szychowski PJ, Veronica Vasquez M, Hernandez F, Wojdylo A (2015) Technological aspects as the main impact on quality of quince liquors. Food Chem 167:387–395. doi: 10.1016/j.foodchem.2014.07.012 CrossRefGoogle Scholar
  13. Castellari M, Sartini E, Spinabelli U, Riponi C, Galassi S (2001) Determination of carboxylic acids, carbohydrates, glycerol, ethanol, and 5-HMF in beer by high-performance liquid chromatography and UV-refractive index double detection. J Chromatogr Sci 39(6):235–238CrossRefGoogle Scholar
  14. Cavka A, Alriksson B, Ahnlund M, Jonsson LJ (2011) Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors. Biotechnol Bioeng 108(11):2592–2599. doi: 10.1002/bit.23244 CrossRefGoogle Scholar
  15. Cerdan-Calero M, Sendra JM, Sentandreu E (2012) Gas chromatography coupled to mass spectrometry analysis of volatiles, sugars, organic acids and aminoacids in Valencia Late orange juice and reliability of the Automated Mass Spectral Deconvolution and Identification System for their automatic identification and quantification. J Chromatogr A 1241:84–95. doi: 10.1016/j.chroma.2012.04.014 CrossRefGoogle Scholar
  16. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Convers Manage 51(7):1412–1421. doi: 10.1016/j.enconman.2010.01.015 CrossRefGoogle Scholar
  17. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502. doi: 10.1021/cr050989d CrossRefGoogle Scholar
  18. Dartora N, de Souza LM, Santana AP, Iacomini M, Valduga AT, Gorin PAJ, Sassaki GL (2011) UPLC-PDA-MS evaluation of bioactive compounds from leaves of Ilex paraguariensis with different growth conditions, treatments and ageing. Food Chem 129(4):1453–1461. doi: 10.1016/j.foodchem.2011.05.112 CrossRefGoogle Scholar
  19. Davis MW (1998) A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD). J Wood Chem Technol 18(2):235–252. doi: 10.1080/02773819809349579 CrossRefGoogle Scholar
  20. Dionex (2000) Analysis of carbohydrates by high performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD). Accessed Jan 2016
  21. Donate PM (2014) Sintese ambientalmente correta a partir de biomassa. Orbital 6(2):101–117Google Scholar
  22. Eiceman GA, Hill HH, Davani B (1994) Gas chromatography. Anal Chem 66(12):621R–633R. doi: 10.1021/ac00084a023 CrossRefGoogle Scholar
  23. Epriliati I, Kerven G, D'Arcy B, Gidley MJ (2010) Chromatographic analysis of diverse fruit components using HPLC and UPLC. Anal Methods 2(10):1606–1613. doi: 10.1039/c0ay00244e CrossRefGoogle Scholar
  24. Escrig PV, Iglesias DJ, Corma A, Primo J, Primo-Millo E, Cabedo N (2013) Euphorbia characias as bioenergy crop: a study of variations in energy value components according to phenology and water status. J Agric Food Chem 61(42):10096–10109. doi: 10.1021/jf403015a CrossRefGoogle Scholar
  25. Fedorowski J, LaCourse WR (2015) A review of pulsed electrochemical detection following liquid chromatography and capillary electrophoresis. Anal Chim Acta 861:1–11. doi: 10.1016/j.aca.2014.08.035 CrossRefGoogle Scholar
  26. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101(23):8915–8922. doi: 10.1016/j.biortech.2010.06.125 CrossRefGoogle Scholar
  27. Frolov A, Henning A, Boettcher C, Tissier A, Strack D (2013) An UPLC-MS/MS method for the simultaneous identification and quantitation of cell wall phenolics in Brassica napus seeds. J Agric Food Chem 61(6):1219–1227. doi: 10.1021/jf3042648 CrossRefGoogle Scholar
  28. Fung EN, Jemal M, Aubry A-F (2013) High-resolution MS in regulated bioanalysis: where are we now and where do we go from here? Bioanalysis 5(10):1277–1284. doi: 10.4155/bio.13.81 CrossRefGoogle Scholar
  29. Gencoglu A, Minerick AR (2014) Electrochemical detection techniques in micro- and nanofluidic devices. Microfluid Nanofluid 17(5):781–807. doi: 10.1007/s10404-014-1385-z CrossRefGoogle Scholar
  30. Heineman WR, Kissinger PT (1980) Analytical electrochemistry – methodology and applications of dynamic techniques. Anal Chem 52(5):R138–R151CrossRefGoogle Scholar
  31. Hemstrom P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29(12):1784–1821. doi: 10.1002/jssc.200600199 CrossRefGoogle Scholar
  32. Herbreteau B, Lafosse M, Morinallory L, Dreux M (1992) High-performance liquid-chromatography of raw sugars and polyols using bonded silica-gels. Chromatographia 33(7-8):325–330. doi: 10.1007/bf02275911 CrossRefGoogle Scholar
  33. Héron S, Dreux M, Alain T (2007) Factors affecting sensitivity of evaporative light scattering detection. LG GC Eur 20(7):414–419Google Scholar
  34. Hope JL, Prazen BJ, Nilsson EJ, Lidstrom ME, Synovec RE (2005) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples. Talanta 65(2):380–388. doi: 10.1016/j.talanta.2004.06.025 CrossRefGoogle Scholar
  35. Ibanez AB, Bauer S (2014) Analytical method for the determination of organic acids in dilute acid pretreated biomass hydrolysate by liquid chromatography-time-of-flight mass spectrometry. Biotechnol Biofuels 7:145. doi: 10.1186/s13068-014-0145-3 CrossRefGoogle Scholar
  36. Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N (2008) Separation efficiencies in hydrophilic interaction chromatography. J Chromatogr A 1184(1-2):474–503. doi: 10.1016/j.chroma.2008.01.075 CrossRefGoogle Scholar
  37. Jensen MB, Johnson DC (1997) Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products. Anal Chem 69(9):1776–1781. doi: 10.1021/ac960828x CrossRefGoogle Scholar
  38. Kafkas E, Kosar M, Turemis N, Baser KHC (2006) Analysis of sugars, organic acids and vitamin C contents of blackberry genotypes from Turkey. Food Chem 97(4):732–736. doi: 10.1016/j.foodchem.2005.09.023 CrossRefGoogle Scholar
  39. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145. doi: 10.1007/s00253-003-1537-7 CrossRefGoogle Scholar
  40. Kamm B, Kamm M, Gruber PR, Kromus S (2008) Biorefinery systems – an overview. In: Kamm B, Gruber PR, Kamm B (eds) Biorefineries-industrial processes and products. Wiley-VCH, Berlin, pp 1–40. doi: 10.1002/9783527619849.ch1 Google Scholar
  41. Kissinger PT (1986) Electrochemical detectors. In: Vickrey TH (ed) Liquid chromatography detectors, 1st edn. Marcel Dekker, New York, NY, pp 125–164Google Scholar
  42. Kiyota E, Mazzafera P, Sawaya ACHF (2012) Analysis of soluble lignin in sugarcane by ultrahigh performance liquid chromatography-tandem mass spectrometry with a do-it-yourself oligomer database. Anal Chem 84(16):7015–7020. doi: 10.1021/ac301112y CrossRefGoogle Scholar
  43. Kotnik D, Novic M, LaCourse WR, Pihlar B (2011) Cathodic re-activation of the gold electrode in pulsed electrochemical detection of carbohydrates. J Electroanal Chem 663(1):30–35. doi: 10.1016/j.jelechem.2011.09.026 CrossRefGoogle Scholar
  44. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391. doi: 10.1007/s10295-008-0327-8 CrossRefGoogle Scholar
  45. La Torre GL, Saitta M, Vilasi F, Pellicano T, Dugo G (2006) Direct determination of phenolic compounds in Sicilian wines by liquid chromatography with PDA and MS detection. Food Chem 94(4):640–650. doi: 10.1016/j.foodchem.2005.02.007 CrossRefGoogle Scholar
  46. Larsson S, Quintana-Sainz A, Reimann A, Nilvebrant NO, Jonsson LJ (2000) Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 84–6:617–632. doi: 10.1385/abab:84-86:1-9:617 CrossRefGoogle Scholar
  47. Leijdekkers AGM, Sanders MG, Schols HA, Gruppen H (2011) Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection. J Chromatogr A 1218(51):9227–9235. doi: 10.1016/j.chroma.2011.10.068 CrossRefGoogle Scholar
  48. Li H, Qing Q, Kumar R, Wyman CE (2013) Chromatographic determination of 1, 4-beta-xylooligosaccharides of different chain lengths to follow xylan deconstruction in biomass conversion. J Ind Microbiol Biotechnol 40(6):551–559. doi: 10.1007/s10295-013-1254-x CrossRefGoogle Scholar
  49. Liu XJ, Ai N, Zhang HY, Lu MZ, Ji DX, Yu FW, Ji JB (2012) Quantification of glucose, xylose, arabinose, furfural, and HMF in corncob hydrolysate by HPLC-PDA-ELSD. Carbohydr Res 353:111–114. doi: 10.1016/j.carres.2012.03.029 CrossRefGoogle Scholar
  50. Luo CD, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenerg 22(2):125–138. doi: 10.1016/s0961-9534(01)00061-7 CrossRefGoogle Scholar
  51. Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sust Energ Rev 49:871–906. doi: 10.1016/j.rser.2015.04.091 CrossRefGoogle Scholar
  52. Lv Y, Yang XB, Zhao Y, Ruan Y, Yang Y, Wang ZZ (2009) Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem 112(3):742–746. doi: 10.1016/j.foodchem.2008.06.042 CrossRefGoogle Scholar
  53. Ma CM, Sun Z, Chen CB, Zhang LL, Zhu SH (2014) Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem 145:784–788. doi: 10.1016/j.foodchem.2013.08.135 CrossRefGoogle Scholar
  54. Maldaner L, Jardim ICSF (2009) O estado da arte da cromatografia líquida de ultra eficiência. Quim Nova 32:214–222CrossRefGoogle Scholar
  55. March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32(4):351–369. doi: 10.1002/(sici)1096-9888(199704)32:4<351::aid-jms512>;2-y CrossRefGoogle Scholar
  56. Marsman JH, Wildschut J, Evers P, de Koning S, Heeres HJ (2008) Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry. J Chromatogr A 1188(1):17–25. doi: 10.1016/j.chroma.2008.02.034 CrossRefGoogle Scholar
  57. Matias J, Gonzalez J, Royano L, Barrena RA (2011) Analysis of sugars by liquid chromatography-mass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass Bioenergy 35(5):2006–2012. doi: 10.1016/j.biombioe.2011.01.056 CrossRefGoogle Scholar
  58. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energ Combust Sci 38(4):522–550. doi: 10.1016/j.pecs.2012.02.002 CrossRefGoogle Scholar
  59. Meyer VR (2010) Detectors. In: Practical high-performance liquid chromatography, 5th edn. John Wiley and Sons, Ltd., London, pp 91–116CrossRefGoogle Scholar
  60. Miranda-Hernandez MP, Valle-Gonzalez ER, Ferreira-Gomez D, Perez NO, Flores-Ortiz LF, Medina-Rivero E (2016) Theoretical approximations and experimental extinction coefficients of biopharmaceuticals. Anal Bioanal Chem 408(5):1523–1530. doi: 10.1007/s00216-015-9261-6 CrossRefGoogle Scholar
  61. Nowicka P, Wojdylo A (2016) Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree. Food Chem 196:925–934. doi: 10.1016/j.foodchem.2015.10.019 CrossRefGoogle Scholar
  62. NRC (2000) Overview. In: NRC (ed) Biobased industrial products, priorities for research and commercialization, 1st edn. National Academic, Washington, DC, pp 15–52Google Scholar
  63. NREL (2008) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Accessed Jan 2016
  64. Owen BC, Haupert LJ, Jarrell TM, Marcum CL, Parsell TH, Abu-Omar MM, Bozell JJ, Black SK, Kenttamaa HI (2012) High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products. Anal Chem 84(14):6000–6007. doi: 10.1021/ac300762y CrossRefGoogle Scholar
  65. Patel KN, Patel JK, Patel MP, Rajput GC, Patel HA (2010) Introduction to hyphenated techniques and their applications in pharmacy. Pharm Methods 1(1):2–13. doi: 10.1016/S2229-4708(10)11002-4 CrossRefzbMATHGoogle Scholar
  66. Pazourek J (2014) Fast separation and determination of free myo-inositol by hydrophilic liquid chromatography. Carbohydr Res 391:55–60. doi: 10.1016/j.carres.2014.03.010 CrossRefGoogle Scholar
  67. Pettersen RC (1984) The chemical-composition of wood. In: Rowell R (ed) The chemistry of solid wood, Advances in chemistry, 1st edn. American Chemical Society, Washington, DC, pp 57–126CrossRefGoogle Scholar
  68. Pettersen RC (1991) Wood sugar analysis by anion chromatography. J Wood Chem Technol 11(4):495–501. doi: 10.1080/02773819108051089 Google Scholar
  69. Phenomenex (2016) Kinetex 2.6 μm Calculator. Accessed Jan 2016
  70. Pitt JJ (2009) Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev 30(1):19Google Scholar
  71. Qing Q, Li H, Kumar R, Wyman CE (2013) Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 1st edn. John Wiley and Sons, Oak Ridge, TN, pp 391–415CrossRefGoogle Scholar
  72. Raj A, Reddy MMK, Chandra R (2007) Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. Int Biodeterior Biodegrad 59(4):292–296. doi: 10.1016/j.ibiod.2006.09.006 CrossRefGoogle Scholar
  73. Remoroza C, Cord-Landwehr S, Leijdekkers AGM, Moerschbacher BM, Schols HA, Gruppen H (2012) Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydr Polym 90(1):41–48. doi: 10.1016/j.carbpol.2012.04.058 CrossRefGoogle Scholar
  74. Ross KL, Tu TT, Smith S, Dalluge JJ (2007) Profiling of organic acids during fermentation by ultraperformance liquid chromatography-tandem mass spectrometry. Anal Chem 79(13):4840–4844. doi: 10.1021/ac0624243 CrossRefGoogle Scholar
  75. Roussel TJ, Jackson DJ, Baldwin RP, Keynton RS (2013) Amperometric techniques. Encyclopedia Microfluidics Nanofluidics 2013:1–11. doi: 10.1007/978-3-642-27758-0_26-2 Google Scholar
  76. Rucki RJ (1980) Electrochemical detectors for flowing liquid-systems. Talanta 27(2):147–156. doi: 10.1016/0039-9140(80)80029-4 CrossRefGoogle Scholar
  77. Ruiz-Matute AI, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz ML, Martinez-Castro I (2011) Derivatization of carbohydrates for GC and GC-MS analyses. J Chromatogr B Anal Technol Biomed Life Sci 879(17-18):1226–1240. doi: 10.1016/j.jchromb.2010.11.013 CrossRefGoogle Scholar
  78. Santos AL, Takeuchi RM, Fenga PG, Stradiotto NR (2011) Electrochemical methods in analysis of biofuels. In: Ivanov O (ed) Applications and experiences of quality control, 1st edn. InTech, Rijeka, pp 451–494Google Scholar
  79. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053. doi: 10.1021/jf1008023 CrossRefGoogle Scholar
  80. Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography, 3rd edn. Wiley & Sons, Hoboken, NJGoogle Scholar
  81. Stagge S, Cavka A, Jonsson LJ (2015) Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast. AMB Express 5:61. doi: 10.1186/s13568-015-0149-9 CrossRefGoogle Scholar
  82. Sun F, Sun Q (2015) Current trends in lignocellulosic analysis with chromatography. Ann Chromatogr Sep Tech 1(2):03Google Scholar
  83. Swartz ME (2005) UPLC (TM): an introduction and review. J Liq Chromatogr Relat Technol 28(7-8):1253–1263. doi: 10.1081/jlc-200053046 CrossRefGoogle Scholar
  84. Swartz ME, Krull IS (2012) HPLC method development and optimization with validation in mind. In: Swartz ME, Krull IS (eds) Handbook of analytical validation, 1st edn. Taylor & Francis Group, Boca Raton, FL, pp 37–60Google Scholar
  85. ThermoScientific (2016) HPLC method development calculator. Accessed Jan 2016
  86. Valliyodan B, Shi H, Nguyen HT (2015) A simple analytical method for high-throughput screening of major sugars from soybean by normal-phase HPLC with evaporative light scattering detection. Chromatogr Res Int 2015:8. doi: 10.1155/2015/757649 Google Scholar
  87. van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2(1):41–57. doi: 10.1002/bbb.43 CrossRefGoogle Scholar
  88. Vaz S Jr, Dodson JR (2014) Application of analytical chemistry in the production of liquid biofuels. In: Domingos Padula A, Silveira dos Santos M, Benedetti Santos OI, Borenstein D (eds) Liquid biofuels: emergence, development and prospects, vol 27. Springer, London, pp 173–187Google Scholar
  89. Wang Y-H, Avula B, Fu X, Wang M, Khan IA (2012) Simultaneous determination of the absolute configuration of twelve monosaccharide enantiomers from natural products in a single injection by a UPLC-UV/MS method. Planta Med 78(8):834–837. doi: 10.1055/s-0031-1298432 CrossRefGoogle Scholar
  90. Waters (2016) Increase productivity and reduce solvent consumption with UPLC. Accessed Jan 2016
  91. Weber SG, Purdy WC (1981) Electrochemical detectors in liquid-chromatography – a short review of detector design. Ind Eng Chem Prod Res Dev 20(4):593–598. doi: 10.1021/i300004a003 CrossRefGoogle Scholar
  92. Webster GK, Jensen JS, Diaz AR (2004) An investigation into detector limitations using evaporative light-scattering detectors for pharmaceutical applications. J Chromatogr Sci 42(9):484–490. doi: 10.1093/chromsci/42.9.484 CrossRefGoogle Scholar
  93. Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I – results of screening for potential candidates from sugars and synthesis gas, 1st edn. States, UnitedGoogle Scholar
  94. Westereng B, Agger JW, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrøm YH, Eijsink VGH (2013) Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A 1271(1):144–152. doi: 10.1016/j.chroma.2012.11.048 CrossRefGoogle Scholar
  95. Wettstein SG, Alonso DM, Gurbuz EI, Dumesic JA (2012) A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr Opin Chem Eng 1(3):218–224. doi: 10.1016/j.coche.2012.04.002 CrossRefGoogle Scholar
  96. Xu J, Chen D, Yan X, Chen J, Zhou C (2010) Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry. Anal Chim Acta 663(1):60–68. doi: 10.1016/j.aca.2010.01.026 CrossRefGoogle Scholar
  97. Xu Y, Fan L, Wang X, Yong Q, Yu SY (2013) Simultaneous Separation and Quantification of Linear Xylo- and Cello-Oligosaccharides Mixtures in Lignocellulosics Processing Products on High-Performance Anion-Exchange Chromatography Coupled with Pulsed Amperometric Detection. Bioresources 8 (3):3247–3259Google Scholar
  98. Yu K, Little D, Plumb R, Smith B (2006) High-throughput quantification for a drug mixture in rat plasma – a comparison of ultra performance (TM) liquid chromatography/tandem mass spectrometry with high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20(4):544–552. doi: 10.1002/rcm.2336 CrossRefGoogle Scholar
  99. Zhou X, Cao S, Li X, Tang B, Ding X, Xi C, Hu J, Chen Z (2015) Simultaneous determination of 18 preservative residues in vegetables by ultra high performance liquid chromatography coupled with triple quadrupole/linear ion trap mass spectrometry using a dispersive-SPE procedure. J Chromatogr B 989:21–26. doi: 10.1016/j.jchromb.2015.02.030 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.EMBRAPA, Embrapa AgroenergyBrasíliaBrazil
  2. 2.UCB, Catholic University of BrasíliaBrasíliaBrazil
  3. 3.UFGD, Faculty of Science and TechnologyFederal University of Grande DouradosDouradosBrazil

Personalised recommendations