Advertisement

Analyses of Biomass Fibers by XRD, FT-IR, and NIR

Chapter

Abstract

This chapter involves the description and application of three advanced analytical techniques that are currently used to assess the potential of biomass for the production of biofuels, feeds, and chemicals. X-ray diffraction, FT-IR, and NIR may be used to study the structure of fibers in native biomass as well as changes during conditioning, pretreatment, and processing in a modern biorefinery. X-ray diffraction is used mainly to study the crystallinity of the samples based on the cellulose fraction which is one of the two major barriers for hydrolysis. FT-IR is used to get insight about the presence and interactions of main components of the fiber such as cellulose, hemicelluloses, and lignin. NIR is mainly used for a fast chemical characterization of the biomass and it is gaining a place to study changes caused by the pretreatments.

Keywords

Biomass fibers Molecular properties X-Ray Spectroscopy 

References

  1. Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, Balan V, Dale BE, Mohd MT (2016) Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen. Bioresource Technol 211:200–208CrossRefGoogle Scholar
  2. Alciaturi C, Escobar ME, Vallejo R (1996) Prediction of coal properties by derivative DRIFT spectroscopy. Fuel 75(4):491–499CrossRefGoogle Scholar
  3. Balan V, Sousa LC, Chundawat SPS, Marshall D, Sharma LN, Chambliss CK, Dale BE (2009) Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra). Biotechnol Prog 25(2):365–375CrossRefGoogle Scholar
  4. Baldinger T, Moosbauer J, Sixta H (2000) Supermolecular structure of cellulosic materials by Fourier transform infrared spectroscopy (FT-IR) calibrated by WAXS and 13C-NMR. Lenzing Berichte 79:15–17Google Scholar
  5. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefGoogle Scholar
  6. Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of Analytical Chemistry. John Wiley & Sons, New York, pp 10815–10837Google Scholar
  7. Cooley TW, Tukey TW (1965) An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19:297–306MathSciNetCrossRefzbMATHGoogle Scholar
  8. Corgié SC, Smith HM, Walker LP (2011) Enzymatic transformations of cellulose assessed by quantitative high throughput fourier transform infrared spectroscopy (QHTFTIR). Biotechnol Bioeng 108(7):1509–1520CrossRefGoogle Scholar
  9. Cozzolino D, Fassio A, Gimenez A (2000) The use of near-infrared reflectance spectroscopy (NIRS) to predict the composition of whole maize plants. J Sci Food Agric 81:142–146CrossRefGoogle Scholar
  10. Davies AMC (2005) An introduction to near infrared spectroscopy. NIR News 16(7):9–11CrossRefGoogle Scholar
  11. Doner LM, Hicks K (1997) Isolation of hemicellulose from corn fibre by alkaline hydrogen peroxide extraction. Cereal Chem 74:176–181CrossRefGoogle Scholar
  12. Donohoe BS, Tucker MP, Davis M, Decker SR, Himmel ME, Vinzant TB (2007) Tracking lignin coalescence and migration through plant cell walls during pretreatment. Abstracts of the 29th symposium on biotechnology for fuels and chemicals. Denver, CO, 29 Apr–2 May. 5B-01, p 67Google Scholar
  13. Duchesne I, Hult EL, Molin U, Daniel G, Iversen T, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111CrossRefGoogle Scholar
  14. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) Fourier transform – materials analysis. InTech, Dublin, http://www.intechopen.com/books/fourier-transform-materials-analysis/fourier-transform-infrared-spectroscopy-for-natural-fibres Google Scholar
  15. Faneite A (2010) Cinética del secado de materiales lignocelulósicos tratados y no tratados con presurización y despresurización (PDA) (Drying kinetics of lignocellulosic materials untreated and treated with pressurization and depressurization with ammonia (PDA)). Tesis. Magister Scientiarum en Ingeniería Química. Universidad del Zulia, Maracaibo, VenezuelaGoogle Scholar
  16. Faneite A, Ferrer A, Aiello-Mazzarri C, Villegas J, Gnansounou E (2011) Interaction between chemical composition, microcrystalline structure and morphology of the most important agricultural byproducts in the northern of South America, and drying kinetics. In: Proceedings of the XIX international symposium of alcohol fuels, Verona, Italy, Oct 2011, p 1–6Google Scholar
  17. Fearn T (2005) Chemometrics: an enabling tool for NIR. NIR News 16(7):17–19CrossRefGoogle Scholar
  18. Ferrer A, Sulbarán-de-Ferrer B, Byers FM, Dale BE, Aiello C (1997) Aumento y aprovechamiento del potencial nutritivo de forrajes y residuos mediante procesos amoniacales y enzimáticos para alimentación de animales rumiantes y monogástricos (Enhancing the nutritional potential of forages and residues by ammonia and enzymatic processes to produce feeds for ruminant and monogastric animals). In: Primer Encuentro de Productores Agrícolas con la Biotecnología. Fundacite-Zulia. J. B. Editores. Maracaibo. p 171–194Google Scholar
  19. Ferrer A, Byers FM, Sulbarán-de-Ferrer B, Dale BE, Aiello C (2000) Optimizing ammonia pressurization/depressurization processing conditions to enhance enzymatic susceptibility of dwarf elephant grass. Appl Biochem Biotechnol 84(86):163–179CrossRefGoogle Scholar
  20. Ferrer A, Ríos J, Urribarrí L (2013) Biorefinación de la Lemna obscura del Lago de Maracaibo. Parte II Producción de alimentos para animales y bioetanol (Biorefining of Lemna obscura from Lake Maracaibo. Part II. Production of animal feeds and bioethanol. In: Boves M, Rincón JE (eds) Eutrofización del Lago de Maracaibo: Pasado. Presente y perspectivas. Universidad del Zulia, Zulia, pp 257–286Google Scholar
  21. Festucci-Buselli R, Otoni W, Joshi C (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Review. Braz J Plant Physiol 19(1):1–13CrossRefGoogle Scholar
  22. Fitoussi C, Chiesa S, Villegas J, Gnansounou E, Alciaturi C, Ferrer A (2011) Compositional analysis of biomass feedstocks via near infrared spectroscopy for second-generation bioethanol production. Paper presented at the 33rd symposium of biotechnology for fuels and chemicals. Seattle, 2–5 MayGoogle Scholar
  23. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558CrossRefGoogle Scholar
  24. Geladi P, Kowalski BR (1986) Partial least squares regression: a tutorial. Anal Chim Acta 185:1–17CrossRefGoogle Scholar
  25. Goering H, Van Soest P (1970) Forage fiber analyses (apparatus, reactants, procedures, and some applications), Agriculture handbook n° 379. ARS-USDA, Washington, DCGoogle Scholar
  26. Gollapalli LE, Dale BE, Rivers DM (2002) Predicting digestibility of ammonia fiber explosion (AFEX)-treated rice straw. Appl Biochem Biotechnol 98(100):23–35CrossRefGoogle Scholar
  27. Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry, 2nd edn. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  28. Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis. Appl Biochem Biotechnol 105(108):5–16CrossRefGoogle Scholar
  29. Hegde RR, Kamath MG, Dahiya A (2004) Polymer crystallinity Nonwovens science and technology II. Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, http://www.engr.utk.edu/mse/Textiles/Polymer%20Crystallinity.htm. Accessed 30 Mar 2016
  30. Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissium L.) stems. J Sci Food Agric 82:685–696CrossRefGoogle Scholar
  31. Ibrahim MM, El-Zawawy WK, Abdel-Fattah YR, Soliman NA, Agblevor FA (2011) Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohyd Polym 83:720–726CrossRefGoogle Scholar
  32. Jayme V, Knolle H (1964) The empirical x-ray determination of the degree of crystallinity of cellulosic material. Papier 18:249–255Google Scholar
  33. Jin S, Chen H (2007) Near-infrared analysis of the chemical composition of rice straw. Ind Crop Prod 26:207–211CrossRefGoogle Scholar
  34. Kacurákova M, Capeka P, Sasinkova V, Wellnerb N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohyd Polym 43:195–203CrossRefGoogle Scholar
  35. Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresource Technol 101:175–3181CrossRefGoogle Scholar
  36. Kelley SS, Rowell RM, Davis M, Jurich CK, Ibach R (2004) Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry”. Biomass Bioenerg 27:77–88CrossRefGoogle Scholar
  37. Kemp W (1991) Organic Spectroscopy, 3rd edn. Palgrave Macmillan, LondonCrossRefGoogle Scholar
  38. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol l. Fundamentals and analytical methods. Weinheim, Wiley-VCH Verlag GmbH, pp 14–18, 48–50CrossRefGoogle Scholar
  39. Krässig H (1993) Cellulose structure, accessibility and reactivity. Polymer monographs, vol 11. Gordon and Breach Science Publishers, Amsterdam, pp 12–16, 45–48Google Scholar
  40. Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T (2008) Cell wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology Biofuels 1(5):1–9Google Scholar
  41. Landis C (1971) Graphitization of dispersed carbonaceous materials in metamorphic rocks. Lithos 14:215–224Google Scholar
  42. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRefGoogle Scholar
  43. Lee JM, Shi J, Venditti RA, Jameel H (2009) Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis. Bioresource Technol 100:6434–6441CrossRefGoogle Scholar
  44. Lee JM, Hasan J, Venditti RA (2010) A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technol 101:5449–5458Google Scholar
  45. Lennholm H, Iversen T (1995) The effects of laboratory beating on cellulose structure. Nordic Pulp Paper Res J 10:104–109CrossRefGoogle Scholar
  46. Li J, Gellerstedt G, Toven K (2009) Steam explosion lignins: their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresource Technol 100:2556–2561CrossRefGoogle Scholar
  47. Liu L, Ye XP, Womac AR, Sokhansanj S (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohyd Polym 81:820–829CrossRefGoogle Scholar
  48. Liu Z, Fatehi P, Jahan MS, Ni Y (2011) Separation of lignocellulosic materials by combined processes of pre-hydrolysis and ethanol extraction. Bioresource Technol 102:1264–1269CrossRefGoogle Scholar
  49. Lupoi JS, Singh S, Davis M, Lee DJ, Shepherd M, Simmons BA, Henry RJ (2014a) High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development. Biotechnol Biofuels 7:93 (open Access number)CrossRefGoogle Scholar
  50. Lupoi JS, Singh S, Simmons BA, Henry RJ (2014b) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high throughput techniques. Bioenerg Res 7:1–23CrossRefGoogle Scholar
  51. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polyms 86:1291–1299CrossRefGoogle Scholar
  52. Marchessault R, Sarko A (1968) X-Ray structure of polysaccharides. Adv Carbohyd Chem Biochem 22:429–449Google Scholar
  53. Marten G, Shenk J, Barton III F (1989) Editors “near infrared reflectance spectroscopy (NIRS): analysis of forage quality”. USDA Agriculture research service handbook, n° 643Google Scholar
  54. Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262CrossRefGoogle Scholar
  55. Montiel M, Rodriguez D (2008) Optimización de las condiciones de tratamiento PDA del follaje de yuca para la obtención de concentrados protéicos (Optimizing conditions of PDA treatment of cassava foliage to obtain protein concentrates). Tesis. Ingeniería Química. Universidad Rafael Urdaneta, Maracaibo, VenezuelaGoogle Scholar
  56. Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energ 35:1624–1631CrossRefGoogle Scholar
  57. Nelson M, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice type I, II, III and amorphus cellulose. J Appl Polym Sci 9:1311–1324CrossRefGoogle Scholar
  58. Ozaki Y (2012) Near-infrared spectroscopy—its versatility in analytical chemistry. Anal Sci 28:545–563CrossRefGoogle Scholar
  59. Pasquini C (2003) Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J Braz Chem Soc 14(2):198–219CrossRefGoogle Scholar
  60. Peters J (2003) Caracterización de las fracciones protéicas de pasto elefante enano tratado con amoníaco (Pennisetum pupureum Schum. cv. Mott) (Characterization of the protein fractions of dwarf elephant grass treated with ammonia (Pennisetum pupureum Schum. Cv. Mott). Tesis. Licenciado en Química, Universidad del Zulia, MaracaiboGoogle Scholar
  61. Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym Degrad Stabil 96:679–685CrossRefGoogle Scholar
  62. Poletto M, Pistor V, Campomanes RM, Zattera AJ (2012) Materials produced from plant biomass. Part II: evaluation of crystallinity and degradation kinetics of cellulose. Mater Res 15(3):421–427CrossRefGoogle Scholar
  63. Qi B, Chen X, Shen F, Su Y, Wan Y (2009) Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind Eng Chem Res 48:7346–7353CrossRefGoogle Scholar
  64. Ren JL, Sun RC, Liu CF, Lin L, He BH (2007) Synthesis and characterization of novel cationic SCB hemicelluloses with a low degree of substitution. Carbohyd Polym 67:347–357CrossRefGoogle Scholar
  65. Rezende CA, de Lima MA, Maziero P, deAzevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54. doi: 10.1186/17546834454 CrossRefGoogle Scholar
  66. Ríos J (2009) Extracción, precipitación y caracterización de las proteínas de la lenteja acuática (Lemna obscura) tratada con amoníaco (Extraction, precipitation and characterization of proteins from duckweed (Lemna obscura) treated with ammonia). Tesis. Licenciado en Química. Universidad del Zulia, Maracaibo, VenezuelaGoogle Scholar
  67. Roncero M (2001) Obtención de una secuencia “TCF” con la aplicación de ozono y enzimas, para el blanqueo de pastas madereras y de origen agrícola. Optimización de la etapa Z. Análisis de los efectos en la fibra celulósica y sus componentes (Getting a sequence “TCF” with the application of ozone and enzymes for bleaching wood and agricultural pulps. Optimization of stage Z. Analysis of the effects on the cellulosic fiber and its components). Tesis doctoral, Departamento de Ingeniería Textil y Papelera, Universidad Politécnica de Cataluña, EspañaGoogle Scholar
  68. Sannigrahi P, Miller SJ, Rgawskas AJ (2010) Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 345:965–970CrossRefGoogle Scholar
  69. Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pre-treatment of wheat straw. Bioresource Technol 64:139–151CrossRefGoogle Scholar
  70. Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  71. Sills DL, Gossett JM (2012) Using FT-IR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng 109:353–362CrossRefGoogle Scholar
  72. Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technol 102:10915–10921CrossRefGoogle Scholar
  73. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  74. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, New YorkGoogle Scholar
  75. Stark E, Luchter K (2005) NIR instrumentation technology. NIR News 16(7):13–16CrossRefGoogle Scholar
  76. Sun RC, Tomkinson J, Ma PL, Liang SF (2000) Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohyd Polym 42:111–122Google Scholar
  77. Sun RC, Sun XF, Wang SQ, Zhu W, Wang XW (2002) Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind Crop Prod 15:179–188CrossRefGoogle Scholar
  78. Sun XF, Sun RC, Fowler P, Baird MS (2004a) Isolation and characterization of cellulose obtained by a two-stage treatment with organosolv and cyanamide activated hydrogen peroxide from wheat straw. Carbohyd Polym 55:379–391CrossRefGoogle Scholar
  79. Sun JX, Sun XF, Zhao H, Sun RC (2004b) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stabil 84:331–339CrossRefGoogle Scholar
  80. Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohyd Res 340:97–106CrossRefGoogle Scholar
  81. Therdthai N, Zhou W (2009) Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). J Food Eng 91(3):482–489CrossRefGoogle Scholar
  82. Uraki Y, Koda K (2015) Utilization of wood cell wall components. Review. J Wood Sci 61(5):447–454CrossRefGoogle Scholar
  83. Urribarrí L (2011) Sacarificación y fermentación simultánea de bagazo de caña de azúcar tratado con amoníaco (Simultaneous saccharification and fermentation of sugarcane bagasse treated with ammonia). PhD Dissertation in Chemistry. University of Zulia, Maracaibo, VenezuelaGoogle Scholar
  84. Urribarrí L, Chacón D, González O, Ferrer A (2009) Protein extraction and enzymatic hydrolysis of ammonia-treated cassava leaves (Manihot esculenta Crantz). Appl Biochem Biotechnol 153:94–103CrossRefGoogle Scholar
  85. Urribarrí L, Ferrer A, Aiello C, Rivera J (2013) Bioethanol from sugarcane bagasse. In: Proceedings of the 2nd Iberoamerican congress on biorefineries, Jaén, España, Apr 2013, p 1–6Google Scholar
  86. Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  87. Weise U (1998) Hornification – mechanisms and a terminology. Paper Timber 80(2):110–114Google Scholar
  88. Xiao B, Sun XF, Sun RC (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stabil 74:307–319CrossRefGoogle Scholar
  89. Xiao L, Wei H, Himmel ME, Jameel H, Kelley SS (2014) NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review. Front Plant Sci 5:388, (open access number) http://journal.frontiersin.org/article/10.3389/fpls.2014.00388/full
  90. Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energ 104:801–809CrossRefGoogle Scholar
  91. Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohyd Polyms 133:438–447CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Analytical Instrumentation Laboratory, Science FacultyUniversity of ZuliaMaracaiboVenezuela
  2. 2.Chemometrics and Optimization Unit, Zulian Institute of Technological ResearchLa Cañada de UrdanetaVenezuela
  3. 3.Chemical Engineering LaboratoryChemical Engineering School, Engineering Faculty, University of ZuliaMaracaiboVenezuela
  4. 4.Agrifoods Unit, Zulian Institute of Technological ResearchLa Cañada de UrdanetaVenezuela

Personalised recommendations