Skip to main content

Studying Cancer Evolution in Barrett’s Esophagus and Esophageal Adenocarcinoma

  • Chapter
  • First Online:
Stem Cells, Pre-neoplasia, and Early Cancer of the Upper Gastrointestinal Tract

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 908))

Abstract

Technological advances in genome sequencing and copy number analysis have allowed researchers to catalog the wide variety of genomic alterations that occur across diverse cancer types. For most cancer types, the lack of high-frequency alterations and the heterogeneity observed both within and between tumors suggest neoplastic progression proceeds through a branched evolutionary pathway as proposed by Nowell in 1976, as opposed to the linear pathway that has dominated medical science for the last century. To understand how cancer evolves over time and space in the body, new study designs are needed that can distinguish between alterations that develop in patients who progress to cancer from to those who don’t. Here we present approaches developed in the study of Barrett’s esophagus, a premalignant precursor of esophageal adenocarcinoma, and discuss strategies for applying the results from these analyses to address the critical clinical problems of overdiagnosis of benign disease, early detection of life-threatening cancer, and effective risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

    Article  CAS  PubMed  Google Scholar 

  2. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aktipis CA, Kwan VS, Johnson KA, et al. Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research. PLoS One. 2011;6(11):e26100. doi:10.1371/journal.pone.0026100.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Croswell JM, Ransohoff DF, Kramer BS. Principles of cancer screening: lessons from history and study design issues. Semin Oncol. 2010;37(3):202–15. doi:10.1053/j.seminoncol.2010.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9):525–32.

    Article  CAS  PubMed  Google Scholar 

  6. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58. doi:10.1126/science.1235122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi:10.1038/35057062.

    Article  CAS  PubMed  Google Scholar 

  8. Dulbecco R. A turning point in cancer research: sequencing the human genome. Science. 1986;231(4742):1055–6.

    Article  CAS  PubMed  Google Scholar 

  9. Leiserson MD, Vandin F, Wu HT, et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet. 2015;47(2):106–14. doi:10.1038/ng.3168.

    Article  CAS  PubMed  Google Scholar 

  10. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92. doi:10.1056/NEJMoa1113205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Bruin EC, McGranahan N, Mitter R, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science. 2014;346(6206):251–6. doi:10.1126/science.1253462.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Fujimoto J, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9. doi:10.1126/science.1256930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sottoriva A, Kang H, Ma Z, et al. A Big Bang model of human colorectal tumor growth. Nat Genet. 2015;47(3):209–16. doi:10.1038/ng.3214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4. doi:10.1038/nature09807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murugaesu N, Wilson GA, Birkbak NJ, et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov. 2015. doi:10.1158/2159-8290.CD-15-0412.

    PubMed  PubMed Central  Google Scholar 

  16. Li X, Galipeau PC, Paulson TG, et al. Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett’s esophagus. Cancer Prev Res (Phila). 2014;7(1):114–27. doi:10.1158/1940-6207.CAPR-13-0289.

    Article  Google Scholar 

  17. Agrawal N, Jiao Y, Bettegowda C, et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2012;2(10):899–905. doi:10.1158/2159-8290.CD-12-0189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dulak AM, Stojanov P, Peng S, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45(5):478–86. doi:10.1038/ng.2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nones K, Waddell N, Wayte N, et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun. 2014;5:5224. doi:10.1038/ncomms6224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Streppel MM, Lata S, DelaBastide M, et al. Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett’s esophagus. Oncogene. 2014;33(3):347–57. doi:10.1038/onc.2012.586.

    Article  CAS  PubMed  Google Scholar 

  21. Weaver JM, Ross-Innes CS, Shannon N, et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet. 2014;46(8):837–43. doi:10.1038/ng.3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. doi:10.1038/nature12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9. doi:10.1038/nature13480.

    Article  Google Scholar 

  24. Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46(6):573–82. doi:10.1038/ng.2983.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Waters J, Leung ML, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature. 2014;512(7513):155–60. doi:10.1038/nature13600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paulson TG, Reid BJ. Focus on Barrett’s esophagus and esophageal adenocarcinoma. Cancer Cell. 2004;6(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  27. Reid BJ, Li X, Galipeau PC, et al. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer. 2010;10(2):87–101. doi:10.1038/nrc2773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang KK, Sampliner RE. Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol. 2008;103(3):788–97.

    Article  PubMed  Google Scholar 

  29. Howlader N, Noone AM, Krapcho M, et al. (2014). SEER cancer statistics review, 1975-2011. from National Cancer Institute http://seer.cancer.gov/csr/1975_2011/.

  30. Ostrowski J, Mikula M, Karczmarski J, et al. Molecular defense mechanisms of Barrett’s metaplasia estimated by an integrative genomics. J Mol Med. 2007;85(7):733–43.

    Article  CAS  PubMed  Google Scholar 

  31. Dixon J, Strugala V, Griffin SM, et al. Esophageal mucin: an adherent mucus gel barrier is absent in the normal esophagus but present in columnar-lined Barrett’s esophagus. Am J Gastroenterol. 2001;96(9):2575–83.

    Article  CAS  PubMed  Google Scholar 

  32. Tobey NA, Argote CM, Kav T, et al. Anion transport in human squamous and Barrett’s esophageal epithelium. Gastroenterology. 2005;128:A234.

    Google Scholar 

  33. Jovov B, Van Itallie CM, Shaheen NJ, et al. Claudin-18: a dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1106–13.

    Article  CAS  PubMed  Google Scholar 

  34. Leedham SJ, Preston SL, McDonald SA, et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut. 2008;57(8):1041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McDonald SA, Lavery D, Wright NA, et al. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol. 2015;12(1):50–60. doi:10.1038/nrgastro.2014.181.

    Article  PubMed  Google Scholar 

  36. Wang X, Ouyang H, Yamamoto Y, et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell. 2011;145(7):1023–35. doi:10.1016/j.cell.2011.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xian W, Ho KY, Crum CP, et al. Cellular origin of Barrett’s esophagus: controversy and therapeutic implications. Gastroenterology. 2012;142(7):1424–30. doi:10.1053/j.gastro.2012.04.028.

    Article  PubMed  Google Scholar 

  38. Vaughan TL, Fitzgerald RC. Precision prevention of oesophageal adenocarcinoma. Nat Rev Gastroenterol Hepatol. 2015;12(4):243–8. doi:10.1038/nrgastro.2015.24.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bhat S, Coleman HG, Yousef F, et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst. 2011;103(13):1049–57. doi:10.1093/jnci/djr203.

    Article  PubMed  PubMed Central  Google Scholar 

  40. de Jonge PJ, van Blankenstein M, Looman CW, et al. Risk of malignant progression in patients with Barrett’s oesophagus: a Dutch nationwide cohort study. Gut. 2010;59(8):1030–6. doi:10.1136/gut.2009.176701.

    Article  PubMed  Google Scholar 

  41. Hvid-Jensen F, Pedersen L, Drewes AM, et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365(15):1375–83. doi:10.1056/NEJMoa1103042.

    Article  CAS  PubMed  Google Scholar 

  42. Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst. 2010;102(9):605–13. doi:10.1093/jnci/djq099.

    Article  PubMed  Google Scholar 

  43. Levine DS, Blount PL, Rudolph RE, et al. Safety of a systematic endoscopic biopsy protocol in patients with Barrett’s esophagus. Am J Gastroenterol. 2000;95(5):1152–7.

    Article  CAS  PubMed  Google Scholar 

  44. Varghese S, Lao-Sirieix P, Fitzgerald RC. Identification and clinical implementation of biomarkers for Barrett’s esophagus. Gastroenterology. 2012;142(3):435–41. doi:10.1053/j.gastro.2012.01.013. e432.

    Article  PubMed  Google Scholar 

  45. Carter SL, Cibulskis K, Helman E, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30(5):413–21. doi:10.1038/nbt.2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rabinovitch PS, Reid BJ, Haggitt RC, et al. Progression to cancer in Barrett’s esophagus is associated with genomic instability. Lab Invest. 1988;60(1):65–71.

    Google Scholar 

  47. Barrett MT, Sanchez CA, Prevo LJ, et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Gen. 1999;22(1):106–9.

    Article  CAS  Google Scholar 

  48. Blount PL, Meltzer SJ, Yin J, et al. Clonal ordering of 17p and 5q allelic losses in Barrett dysplasia and adenocarcinoma. Proc Natl Acad Sci U S A. 1993;90(8):3221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neshat K, Sanchez CA, Galipeau PC, et al. Barrett’s esophagus: a model of human neoplastic progression. Cold Spring Harb Symp Quant Biol. 1994;59:577–83.

    Article  CAS  PubMed  Google Scholar 

  50. Maley CC, Galipeau PC, Finley JC, et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet. 2006;38(4):468–73.

    Article  CAS  PubMed  Google Scholar 

  51. Galipeau PC, Li X, Blount PL, et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for future esophageal adenocarcinoma. PLoS Med. 2007;4:e67.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kostadinov RL, Kuhner MK, Li X, et al. NSAIDs modulate clonal evolution in Barrett’s esophagus. PLoS Genet. 2013;9(6):e1003553. doi:10.1371/journal.pgen.1003553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13. doi:10.1038/nature10762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lagergren J, Bergstrom R, Lindgren A, et al. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med. 1999;340(11):825–31.

    Article  CAS  PubMed  Google Scholar 

  55. Whiteman DC, Sadeghi S, Pandeya N, et al. Combined effects of obesity, acid reflux and smoking on the risk of adenocarcinomas of the oesophagus. Gut. 2008;57(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  56. Wu AH, Tseng CC, Bernstein L. Hiatal hernia, reflux symptoms, body size, and risk of esophageal and gastric adenocarcinoma. Cancer. 2003;98(5):940–8.

    Article  PubMed  Google Scholar 

  57. Anderson AR, Weaver AM, Cummings PT, et al. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell. 2006;127(5):905–15. doi:10.1016/j.cell.2006.09.042.

    Article  CAS  PubMed  Google Scholar 

  58. Jenkins GJ, Cronin J, Alhamdani A, et al. The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappaB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis. 2008;23(5):399–405.

    Article  CAS  PubMed  Google Scholar 

  59. Grisham MB, Jourd’heuil D, Wink DA. Review article: chronic inflammation and reactive oxygen and nitrogen metabolism--implications in DNA damage and mutagenesis. Aliment Pharmacol Ther. 2000;14 Suppl 1:3–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sihvo EI, Ruohtula T, Auvinen MI, et al. Simultaneous progression of oxidative stress and angiogenesis in malignant transformation of Barrett esophagus. J Thorac Cardiovasc Surg. 2003;126(6):1952–7.

    Article  PubMed  Google Scholar 

  61. Foster JM, Oumie A, Togneri FS, et al. Cross-laboratory validation of the OncoScan(R) FFPE assay, a multiplex tool for whole genome tumour profiling. BMC Med Genomics. 2015;8(1):5. doi:10.1186/s12920-015-0079-z.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986;73:1–11.

    Article  Google Scholar 

  63. Cheng H, Bjerknes M, Amar J. Methods for the determination of epithelial cell kinetic parameters of human colonic epithelium isolated from surgical and biopsy specimens. Gastroenterology. 1984;86(1):78–85.

    CAS  PubMed  Google Scholar 

  64. Yatabe Y, Tavare S, Shibata D. Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci U S A. 2001;98(19):10839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905. doi:10.1038/nature08822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li X, Galipeau PC, Sanchez CA, et al. Single nucleotide polymorphism-based genome-wide chromosome copy change, loss of heterozygosity, and aneuploidy in Barrett’s esophagus neoplastic progression. Cancer Prev Res (Phila). 2008;1(6):413–23. doi:10.1158/1940-6207.CAPR-08-0121.

    Article  CAS  Google Scholar 

  67. Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Stat Med. 2012;31(25):2973–84. doi:10.1002/sim.5403.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med. 1989;8(4):431–40.

    Article  CAS  PubMed  Google Scholar 

  69. Montgomery E, Bronner MP, Goldblum JR, et al. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol. 2001;32(4):368–78.

    Article  CAS  PubMed  Google Scholar 

  70. Odze RD. What the gastroenterologist needs to know about the histology of Barrett’s esophagus. Curr Opin Gastroenterol. 2011;27(4):389–96. doi:10.1097/MOG.0b013e328346f551.

    Article  PubMed  Google Scholar 

  71. Reid BJ, Haggitt RC, Rubin CE, et al. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum Pathol. 1988;19(2):166–78.

    Article  CAS  PubMed  Google Scholar 

  72. Reid BJ, Levine DS, Longton G, et al. Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am J Gastroenterol. 2000;95(7):1669–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schnell TG, Sontag SJ, Chejfec G, et al. Long-term nonsurgical management of Barrett’s esophagus with high-grade dysplasia. Gastroenterology. 2001;120(7):1607–19.

    Article  CAS  PubMed  Google Scholar 

  74. Sharma P, Falk GW, Weston AP, et al. Dysplasia and cancer in a large multicenter cohort of patients with Barrett’s esophagus. Clin Gastroenterol Hepatol. 2006;4(5):566–72.

    Article  PubMed  Google Scholar 

  75. Weston AP, Sharma P, Topalovski M, et al. Long-term follow-up of Barrett’s high-grade dysplasia. Am J Gastroenterol. 2000;95(8):1888–93.

    Article  CAS  PubMed  Google Scholar 

  76. Orlando RC. Mucosal defense in Barrett’s esophagus. In S R, Sharma P, editors. Barrett’s esophagus and esophageal adenocarcinoma. 2nd ed. Oxford, UK: Blackwell Publishing, Ltd.; 2006. p. 60–72.

    Google Scholar 

  77. Bandla S, Pennathur A, Luketich JD, et al. Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma. Ann Thorac Surg. 2012;93(4):1101–6. doi:10.1016/j.athoracsur.2012.01.064.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gu J, Ajani JA, Hawk ET, et al. Genome-wide catalogue of chromosomal aberrations in barrett’s esophagus and esophageal adenocarcinoma: a high-density single nucleotide polymorphism array analysis. Cancer Prev Res (Phila). 2010;3(9):1176–86. doi:10.1158/1940-6207.CAPR-09-0265.

    Article  CAS  Google Scholar 

  79. Nancarrow DJ, Handoko HY, Smithers BM, et al. Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res. 2008;68(11):4163–72.

    Article  CAS  PubMed  Google Scholar 

  80. Maley CC, Galipeau PC, Li X, et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res. 2004;64(10):3414–27.

    Article  CAS  PubMed  Google Scholar 

  81. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144(1):27–40. doi:10.1016/j.cell.2010.11.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li X, Paulson TG, Galipeau PC, et al. Assessment of esophageal adenocarcinoma risk using somatic chromosome alterations in longitudinal samples in Barrett’s esophagus. Cancer Prev Res (Phila). 2015. doi:10.1158/1940-6207.capr-15-0130.

    Google Scholar 

  83. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9. doi:10.1038/nature12634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Levine DS, Haggitt RC, Blount PL, et al. An endoscopic biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett’s esophagus. Gastroenterology. 1993;105(1):40–50.

    Article  CAS  PubMed  Google Scholar 

  85. Kadri SR, Lao-Sirieix P, O’Donovan M, et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study. BMJ. 2010;341:c4372. doi:10.1136/bmj.c4372.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ross-Innes CS, Debiram-Beecham I, O’Donovan M, et al. Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing Barrett's esophagus: a multi-center case-control study. PLoS Med. 2015;12(1):e1001780. doi:10.1371/journal.pmed.1001780.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bridson EY, Gould GW. Quantal microbiology. Lett Appl Microbiol. 2000;30(2):95–8.

    Article  CAS  PubMed  Google Scholar 

  88. Buks E, Schuster R, Heiblum M, et al. Dephasing in electron interference by a “which-path” detector. Nature. 1998;391(6670):871–4.

    Article  CAS  Google Scholar 

  89. Rothwell PM, Fowkes FG, Belch JF, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31–41. doi:10.1016/S0140-6736(10)62110-1.

    Article  CAS  PubMed  Google Scholar 

  90. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–60.

    Article  CAS  PubMed  Google Scholar 

  91. Baca SC, Prandi D, Lawrence MS, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666–77. doi:10.1016/j.cell.2013.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang KK. Current Strategies in the management of Barrett’s esophagus. Curr Gastroenterol Rep. 2005;7(3):196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Farrow DC, Vaughan TL, Sweeney C, et al. Gastroesophageal reflux disease, use of H2 receptor antagonists, and risk of esophageal and gastric cancer. Cancer Causes Control. 2000;11(3):231–8.

    Article  CAS  PubMed  Google Scholar 

  94. Mueller KL. Cancer immunology and immunotherapy. Realizing the promise. Introduction. Science. 2015;348(6230):54–5. doi:10.1126/science.348.6230.54.

    Article  CAS  PubMed  Google Scholar 

  95. Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet. 2010;11(1):47–59. doi:10.1038/nrg2703.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Paulson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paulson, T.G. (2016). Studying Cancer Evolution in Barrett’s Esophagus and Esophageal Adenocarcinoma. In: Jansen, M., Wright, N. (eds) Stem Cells, Pre-neoplasia, and Early Cancer of the Upper Gastrointestinal Tract. Advances in Experimental Medicine and Biology, vol 908. Springer, Cham. https://doi.org/10.1007/978-3-319-41388-4_11

Download citation

Publish with us

Policies and ethics