Skip to main content

Applications of RNS in Signal Processing

  • Chapter
  • First Online:

Abstract

Several applications of RNS for realizing FIR filters, Digital signal processors and digital communication systems have been described in literature. In this Chapter, these will be reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.K. Jenkins, B.J. Leon, The use of residue number systems in the design of finite impulse response digital filters. IEEE Trans. Circuits Syst. CAS-24, 191–201 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Peled, B. Liu, A new hardware realization of digital filters. IEEE Trans. Acoust. Speech Signal Process. ASSP-22, 456–462 (1974)

    Article  Google Scholar 

  3. H.T. Vergos, A 200 MHz RNS core, in Proceedings of ECCTD, vol. II (2001), pp. 249–252

    Google Scholar 

  4. L. Kalampoukas, D. Nikolos, C. Efstathiou, H.T. Vergos, J. Kalamatianos, High speed parallel prefix modulo (2n-1) adders. IEEE Trans. Comput. 49, 673–680 (2000)

    Article  Google Scholar 

  5. S.J. Piestrak, Design of residue generators and multi-operand modulo adders using carry save adders, in Proceedings of 10th Symposium on Computer Arithmetic (1991), pp. 100–107

    Google Scholar 

  6. R. Zimmermann, Efficient VLSI implementation of Modulo (2n ± 1) Addition and multiplication, in Proceedings of IEEE Symposium on Computer Arithmetic (1999), pp. 158–167

    Google Scholar 

  7. A.D. Re, A. Nannarelli, M. Re, Implementation of digital filters in carry save Residue number system, in Conference Record of 39th Asilomar Conference on Signals, Systems and Computers (2001), pp. 1309–1313

    Google Scholar 

  8. G.C. Cardarilli, A.D. Re, A. Nanarelli, M. Re, Impact of RNS coding overhead on FIR filter performance, in Proceedings of the 41st Asilomar Conference on Circuits, Systems and Computers (2007), pp. 1426–1429

    Google Scholar 

  9. A.D. Re, A. Nannarelli, M. Re, A tool for automatic generation of RTL-level VHDL description of RNS FIR filters, in Proceedings of Design and Automation and Test of in Europe Conference and Exhibition (2004), pp. 686–687

    Google Scholar 

  10. G.C. Cardarilli, A.D. Re, A. Nannarelli, M. Re, Low power low leakage implementation of RNS FIR filters, in Conference Record of 39th Asilomar Conference on Signals, Systems and Computers (2005), pp. 1620–1624

    Google Scholar 

  11. G.L. Bernocchi, G.C. Cardarilli, A.D. Re, A. Nannarelli, M.Re, A hybrid RNS adaptive filter for channel equalization, in Proceedings of 40th Asilomar Conference on Signals, Systems and Computers (2006), pp. 1706–1710

    Google Scholar 

  12. G.L. Bernocchi, G.C. Cardarilli, A.D. Re, A. Nannarelli, M. Re, Low-power adaptive filter based on RNS components, in Proceedings of 2007 I.E. International Symposium on Circuits and Systems (ISCAS) (2007), pp. 3211–3214

    Google Scholar 

  13. R. Conway, J. Nelson, Improved RNS FIR filter architectures. IEEE Trans. Circuits Syst. Express Briefs 51, 26–28 (2004)

    Article  Google Scholar 

  14. A. Wrzyszcz, D. Milford, A new modulo 2α + 1 multiplier, in IEEE International Conference on Computer Design: VLSI in Computers and Processors (1993), pp. 614–617

    Google Scholar 

  15. C.-L. Wang, New bit-serial VLSI implementation of RNS FIR digital filters. IEEE Trans. Circuits Syst II. Analog Digit. Signal Process. 41, 768–772 (1994)

    Article  Google Scholar 

  16. B. LaMacchia, G. Redinbo, RNS digital filtering structures for wafer-scale integration. IEEE J. Sel. Areas Commun. 4, 67–80 (1986)

    Article  Google Scholar 

  17. J.C. Bajard, L.S. Didier, T. Hilaire, ρ-Direct form transposed and Residue Number systems for filter implementations, in IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS) (2011), pp. 1–4

    Google Scholar 

  18. P. Patronik, P.K. Berezowski, S.J. Piestrak, J. Biernat, A. Shrivastava, Fast and energy-efficient constant-coefficient FIR filters using residue number system, in 2011 International Symposium on Low Power Electronics and Design (ISLPED) (2011), pp. 385–390

    Google Scholar 

  19. J.H. Choi, N. Banerjee, K. Roy, Variation-aware low-power synthesis methodology for fixed-point FIR filters. IEEE Trans. CAD 28, 87–97 (2009)

    Article  Google Scholar 

  20. R. Patel, M. Benaissa, N. Powell, S. Boussakta, Novel power-delay-area efficient approach to generic modular addition. IEEE Trans. Circuits Syst. I 54, 1279–1292 (2007)

    Article  Google Scholar 

  21. L. Aksoy, E. Da Costa, P. Flores, J. Monteiro, Exact and approximate algorithms for the optimization of area and delay in multiple constant multiplications. IEEE Trans. CAD 27, 1013–1026 (2008)

    Article  Google Scholar 

  22. A. García, U. Meyer-Bäse, F.J. Taylor, Pipelined Hogenauer CIC filters using field-programmable logic and residue number system, in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Seattle, vol. 5 (1998), pp. 3085–3088

    Google Scholar 

  23. M. Griffin, M. Sousa, F. Taylor, Efficient scaling in the residue number System, in Proceedings of IEEE ASSP (May 1989), pp. 1075–1078

    Google Scholar 

  24. G.C. Cardarilli, R. Lojacono, M. Salerno, F. Sargeni, VLSI RNS implementation of fast IIR filters, in Proceedings of of 35th Midwest Symposium on Circuits and Systems (1992), pp. 1245–1248

    Google Scholar 

  25. W.K. Jenkins, Recent advances in residue number techniques for recursive digital filtering. IEEE Trans. Acoust. Speech Signal Process. 27, 19–30 (1979)

    Article  MATH  Google Scholar 

  26. M. Etzel, W. Jenkins, The design of specialized residue classes for efficient recursive digital filter realization. IEEE Trans. Acoust. Speech Signal Process. 30, 370–380 (1982)

    Article  Google Scholar 

  27. A. Nannarelli, G.C. Cardarilli, M. Re, Power-delay trade-off in residue number system. Proc. IEEE ISCAS 5, 413–416 (2003)

    Google Scholar 

  28. G.C. Cardarilli, A. Del Re, A. Nannarelli, M. Re, Residue number system reconfigurable data path, in Proceedings of IEEE ISCAS, vol. II, (2002), pp. 756–759

    Google Scholar 

  29. G.C. Cardarilli, A. Nannarelli, M. Re, Residue number system for low-power DSP applications, in 41st Asilomar Conference (2007), pp. 1412–1416

    Google Scholar 

  30. A. Nannarelli, M. Re, G. C. Cardarilli, Trade-offs between Residue number system and traditional FIR filters, in Proceedings of IEEE ISCAS (2001), pp. 305–308

    Google Scholar 

  31. M.N. Mahesh, M. Mehendale, Low-power realization of residue number system based FIR filters, in 13th International Conference on VLSI Design, Bangalore (May 2001), pp. 350–353

    Google Scholar 

  32. W.L. Freking, K.K. Parhi, Low-power FIR digital filters using residue arithmetic, in Conference Record of 31st Asilomar Conference on Signals, Systems and Computers (ACSSC 1997), Pacific Grove, vol. 1 (1997), pp. 739–743

    Google Scholar 

  33. M.K. Ibrahim, A note on digital filter implementation using hybrid RNS-binary arithmetic. Signal Process. 40, 287–294 (1994)

    Article  MATH  Google Scholar 

  34. B. Parhami, A note on digital filter implementation using hybrid RNS-binary arithmetic. Signal Process. 41, 65–67 (1996)

    Article  MATH  Google Scholar 

  35. G.C. Cardarilli, M. Re, R. Lojacano, A new RNS FIR filter architecture, in Proceedings of 13th International Conference on Digital Signal Processing, DSP 97 (1997), pp. 671–674

    Google Scholar 

  36. P.L. Montgomery, Modular multiplication without trial division. Math. Comput. 44, 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. K.G. Smitha, A.P. Vinod, A reconfigurable high-speed RNS FIR channel filter for multi-standard software radio receivers, in Proceedings of IEEE ICCS (2008), pp. 1354–1358

    Google Scholar 

  38. R. Conway, Efficient residue arithmetic based parallel fixed coefficient FIR filters, in Proceedings of IEEE ISCAS (2008), pp. 1484–1487

    Google Scholar 

  39. I. Lee, W.K. Jenkins, The design of residue number system arithmetic units for a VLSI adaptive equalizer, in IEEE Proceedings of 8th Great Lakes Symposium (1998), pp. 179–184

    Google Scholar 

  40. A. Shah, M. Sid-Ahmed, G. Jullien, A proposed hardware structure for two-dimensional recursive digital filters using the residue number system. IEEE Trans. Circuits Syst. 32, 285–288 (1985)

    Article  Google Scholar 

  41. G.A. Jullien, Residue number scaling and other operations using ROM arrays, in IEEE Transactions on Computers, vol. 27, no. 4 (1978), pp. 325–337

    Google Scholar 

  42. N.R. Shanbag, R.E. Siferd, A single-chip pipelined 2-D FIR filter using residue arithmetic. IEEE J. Solid State Circuits 26, 796–805 (1991)

    Article  Google Scholar 

  43. M.A. Soderstrand, A high-speed low-cost recursive digital filter using residue number arithmetic. Proc. IEEE 65, 1065–1067 (1977)

    Article  Google Scholar 

  44. L.T. Bruton, Low-sensitivity digital ladder filters. IEEE Trans. Circuits Syst. CAS-22, 168–176 (1975)

    Article  Google Scholar 

  45. F.J. Taylor, C.H. Huang, An auto-scale residue multiplier. IEEE Trans. Comput. C-31, 321–325 (1982)

    Article  Google Scholar 

  46. R. Ramnarayan, F. Taylor, On large moduli residue number system recursive digital filters. IEEE Trans. Circuits Syst. 32, 349–359 (1985)

    Article  MathSciNet  Google Scholar 

  47. J. Chen, J. Hu, Energy-efficient digital signal processing via voltage-overscaling-based Residue Number System. IEEE Trans. VLSI Syst. 21, 1322–1332 (2013)

    Article  Google Scholar 

  48. Z. Luan, X. Chen, N. Ge, Z. Wang, Simplified fault tolerant FIR filter architecture based on redundant residue number system. Electron. Lett. 50, 1768–1770 (2014)

    Article  Google Scholar 

  49. Z. Gao, P. Reviriego, W. Pan, Z. Xu, M. Zhao, J. Wang, J.A. Maeastro, Efficient arithmetic-residue-based SEU-tolerant FIR filter design’. IEEE Trans. Circuits Syst. II 60, 497–501 (2013)

    Article  Google Scholar 

  50. R. Chaves, L. Sousa, RDSP: a RISC DSP based on residue number system, in Proceedings of Euromicro Symposium on Digital System Design: Architectures, Methods, and Tools, Antalya, Turkey (2003), pp. 128–135

    Google Scholar 

  51. H. Fu, O. Mencer, W. Luk, Optimizing residue arithmetic on FPGAs, in Proceedings of International Conference on ICECE Technology 2008, FPT 08 (2008), pp. 41–48

    Google Scholar 

  52. D. Gallaher, F.E. Petry, P. Srinivasan, The digit parallel method for Fast RNS to weighted number system conversion for specific moduli (2k-1, 2k, 2k + 1). IEEE Trans. Circuits Syst. II 44, 53–57 (1997)

    Article  MATH  Google Scholar 

  53. R. Chokshi, K.S. Berezowski, A. Shrivatsava, S.J. Piestrak, Exploiting residue number system for power-efficient digital signal processing in embedded processors, in Proceeding of ACM Embedded Systems Week Conference—CASES, Grenoble, France (2009), pp. 19–27

    Google Scholar 

  54. J. Ramirez, A. Garcia, S. Lopez-Buedo, A. Lloris, RNS-enabled digital signal processor design. Electron. Lett. 38, 266–268 (2002)

    Article  Google Scholar 

  55. S. Perumal, R.E. Siferd, Pipelined 50 MHz CMOS ASIC for 32 bit binary to residue conversion and residue to binary conversion, in Proceedings of Seventh Annual IEEE International ASIC Conference and Exhibit (1994), pp. 454–457

    Google Scholar 

  56. A. Garcia, U. Meyer-Base, A. Lloris, F.J. Taylor, RNS implementation of FIR filter using distributed arithmetic using field programmable logic. Proc. IEEE ISCAS 1, 486–489 (1999)

    Google Scholar 

  57. J. Ramirez, A. Garcia, U. Meyer-Base, F.J. Taylor, A. Lloris, Implementation of RNS based distributed arithmetic discrete wavelet transform architectures. J. VLSI Signal Process. 3, 171–190 (2003)

    Article  MATH  Google Scholar 

  58. C.H. Vun, A.B. Premkumar, W. Zhang, A new RNS based DA approach for inner product computation. IEEE Trans. Circuits Syst. I 60, 2139–2152 (2013)

    Article  MathSciNet  Google Scholar 

  59. G.C. Cardarilli, A. Nannarelli, M. Re, On the comparison of different number systems in the implementation of complex FIR filters, in Proceedings of 16th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Rodos, Greece (2008), pp. 37–41

    Google Scholar 

  60. F.J. Taylor, A single modulus complex ALU for signal processing, in IEEE Transactions on ASSP (1985), pp. 1302–1318

    Google Scholar 

  61. G.C. Cardarilli, A. Del Re, A. Nannarelli, M. Re, Low-power implementation of polyphase filters in Quadratic Residue Number system, in Proceedings of IEEE International Symposium on Circuits Systems (ISCAS 2004), Vancouver, vol. 2 (2004), pp. 725–728

    Google Scholar 

  62. G.C. Cardarilli, A. Nannarelli, Y. Oster, M. Petricca, M. Re, Design of large polyphase filters in the Quadratic Residue Number system, in Proceedings of Asilomar Conference (2010), pp. 410–413

    Google Scholar 

  63. A. D’Amora, A. Nannarelli, M. Re, G.C. Cardarilli, Reducing power dissipation in complex digital filters by using the quadratic residue number system, in Conference Record 34th Asilomar Conference on Signals, Systems and Computers (ACSSC 2000), Pacific Grove, vol. 2 (2000), pp. 879–883

    Google Scholar 

  64. T. Stouraitis, V. Paliouras, Considering the alternatives in low-power design. IEEE Circuits Devices Mag. 17, 22–29 (2001)

    Article  Google Scholar 

  65. P.G. Fernandez, A. Garcia, J. Ramirez, L. Parrrilla, A. Lloris, A new implementation of the discrete cosine transform in the residue number system, in Proceedings of 33rd Asilomar Conference on Signals, Systems and Computers, vol. 2 (1999), pp. 1302–1306

    Google Scholar 

  66. J. Ramirez, A. Garcia, P.G. Fernandez, L. Parrrilla, A. Lloris, A New architecture to compute discrete cosine transform using the quadratic residue number system. Proc. IEEE ISCAS 5, 321–324 (2000)

    Google Scholar 

  67. J. Ramirez, A. Garcia, P.G. Fernandez, L. Parrilla, A. Lloris, A novel QRNS-based 1-D DCT processor over field programmable logic devices, in Proceedings of the XV Design of Circuits and Integrated Systems Conference DCIS 2000, Montpellier, Francia (2000), pp. 610–615

    Google Scholar 

  68. J. Ramirez, A. Garcia, P.G. Fernandez, L. Parrilla, A. Lloris, A fast QRNS based algorithm for DCT and its field programmable logic implementation. JCSC 12, 111–121 (2003)

    Google Scholar 

  69. G. Fernandez, J. Ramirez, A. Garcia, L. Parrrilla, A. Lloris, A new RNS architecture for the computation of the scaled 2D-DCT on field programmable logic, 1977. In Conference Record of the 34th Asilomar Conference, vol. 1 (2000), pp. 379–383

    Google Scholar 

  70. K.R. Rao, P. Yip, Discrete Cosine Transform Algorithms: Advantages and Applications (Academic, Boston, 1990)

    MATH  Google Scholar 

  71. M.J. Narasimha, A.M. Peterson, O the computation of the discrete cosine transform. IEEE Trans. Commun. 26, 934–946 (1978)

    Article  MATH  Google Scholar 

  72. Y. Arai, T. Agui, M. Nakajima, A fast DCT-SQ scheme for images. Trans. IEICE 71, 1095–1097 (1988)

    Google Scholar 

  73. F.J. Taylor, An RNS discrete Fourier transform implementation. IEEE Trans. Acoust. Speech Signal Process. 38, 1386–1394 (1990)

    Article  Google Scholar 

  74. J.H. McCllellan, C.M. Rader, Number Theory in Digital Signal Processing (Prentice-Hall, Englewood Cliffs, 1979)

    Google Scholar 

  75. B.D. Tseng, G.A. Jullien, W.C. Miller, Implementation of FFT structures using the residue number system. IEEE Trans. Comput. C-28, 831–845 (1979)

    Article  MATH  Google Scholar 

  76. F.J. Taylor, G. Papadorakis, A. Skavantzos, T. Stouraitis, A radix-4 FFT using complex RNS arithmetic. IEEE Trans. Comput. 34, 573–576 (1985)

    Article  Google Scholar 

  77. G.A. Jullien, M. Taheri, J. Carr, G. Thomsen, W.C. Miller, A VLSI systolic quadratic residue DFT with fault tolerance, in Proceedings of ISCAS (1988), pp. 2271–2274

    Google Scholar 

  78. A.Z. Baraniecka, G.A. Jullien, Residue number system implementations of number theoretic transforms in complex residue rings. IEEE Trans. Acoust. Speech Signal Process. 28, 285–291 (1980)

    Article  MATH  Google Scholar 

  79. R. Krishnan, G. Jullien, W. Miller, Implementation of complex number theoretic transforms using quadratic residue number systems. IEEE Trans. Circuits Syst. 33, 759–766 (1986)

    Article  Google Scholar 

  80. V.S. Dimitrov, G.A. Jullien, W.C. Miller, A residue number system implementation of real orthogonal transforms. IEEE Trans. Signal Process. 46, 563–570 (1998)

    Article  MathSciNet  Google Scholar 

  81. H.C. Shyu, T.K. Truong, I.S. Reed, A complex integer multiplier using the quadratic polynomial residue number system with numbers of the form 22n+1. IEEE Trans. Comput. C-36, 1255–1258 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  82. M. Abdallah, A. Skavantzos, On the binary quadratic residue number system with non-coprime moduli. IEEE Trans. Signal Process. 45, 2085–2091 (1997)

    Article  Google Scholar 

  83. Y. Liu, E.M.K. Lai, Design and implementation of an RNS-based 2-D DWT processor. IEEE Trans. Consum. Electron. 50, 376–385 (2004)

    Article  Google Scholar 

  84. J. Ramirez, A. Garcia, P.G. Frernandez, L. Parrilla, A. Lloris, RNS-FPL merged architecture for orthogonal DWT. Electron. Lett. 36, 1198–1199 (2000)

    Article  Google Scholar 

  85. T. Toivonen, J. Heikkilä, Video filtering with Fermat number theoretic transforms using residue number system. IEEE Trans. Circuits Syst. Video Technol. 16, 92–101 (2006)

    Article  Google Scholar 

  86. L.L. Yang, L. Hanjo, Residue number system based Multiple-code DS-CDMA system, in IEEE 49th Vehicular Technology Conference, vol. 2 (1999), pp. 1450–1454

    Google Scholar 

  87. L.L. Yang, L. Hanjo, Ratio statistic assisted Residue number system based parallel communication scheme, in IEEE 49th Vehicular Technology Conference, vol. 2 (1999), pp. 894–898

    Google Scholar 

  88. L.L. Yang, L. Hanzo, A residue number system based parallel communication scheme using orthogonal signaling: part I—system outline. IEEE Trans. Veh. Technol. 51, 1534–1546 (2002)

    Article  Google Scholar 

  89. L.L. Yang, L. Hanzo, Residue number system assisted fast frequency-hopped synchronous ultra-wideband spread-spectrum multiple-access: a design alternative to impulse radio. IEEE J. Sel. Areas Commun. 20, 1652–1663 (2002)

    Article  Google Scholar 

  90. H. Krishna, K.Y. Lin, J.D. Sun, A coding theory approach to error control in redundant residue number systems. I. Theory and single error correction. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 39, 8–17 (1992)

    Article  MATH  Google Scholar 

  91. H. Krishna, J.D. Sun, On theory of fast algorithms for error correction in residue number systems. IEEE Trans. Comput. C-42, 840–852 (1993)

    Article  MathSciNet  Google Scholar 

  92. J. Ramirez, A. Garcia, U. Meyer-Base, A. Lloris, Fast RNS FPL based communications receiver design and implementation, in Proceedings of the 12th International Conference, FPL 2002 Montpellier, France (2–4 September 2002), pp. 472–481

    Google Scholar 

  93. A. Chren, RNS-based enhancements for direct digital frequency synthesis. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 42, 516–524 (1995)

    Article  MATH  Google Scholar 

  94. P.V. Ananda Mohan, On RNS-based enhancements for direct digital frequency synthesis. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48, 988–990 (2001)

    Article  Google Scholar 

  95. A.S. Madhukumar, F. Chin, Enhanced architecture for residue number system-based CDMA for high-rate data transmission. IEEE Trans. Wirel. Commun. 3, 1363–1368 (2004)

    Article  Google Scholar 

  96. S. Zhang, L.L. Yang, Y. Zhang, Redundant residue number system assisted multicarrier direct-sequence code-division dynamic multiple access for cognitive radios. IEEE Trans. Veh. Technol. 61, 1234–1250 (2012)

    Article  Google Scholar 

  97. Y. Yi, H. Jian-Hao, RNS based OFDM transmission scheme with low PARR, in Proceedings of International Conferences on Computational Problem Solving (2011), pp. 326–329

    Google Scholar 

  98. H.T. How, T.H. Liew, Ee-Lin Kuan, L.L. Yang, L. Hanzo, A redundant residue number system coded burst-by-burst adaptive joint-detection based CDMA speech transceiver, IEEE Trans. Veh. Technol. 55, 387–396 (2006)

    Google Scholar 

  99. D. Zhu, B. Natarajan, Residue number system arithmetic-inspired hopping-pilot pattern design. IEEE Trans. Veh. Technol. 59, 3679–3683 (2010)

    Article  Google Scholar 

  100. Y. Han, P. Harliman, S.W. Kim, J.K. Kim, C. Kim, A novel architecture for block interleaving algorithm in MB-OFDM using mixed radix system, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18 (2010), pp. 1020–1024

    Google Scholar 

  101. WiMedia Alliance, MAC-PHY interface specification 1.0. (2005), http://www.Wimedia.org

  102. M. Panella, G. Martinelli, RNS quasi-chaotic generators. Electron. Lett. 36, 1325–1326 (2000)

    Article  Google Scholar 

  103. M. Panella, G. Martinelli, RNS quasi-chaotic generator for self-correcting secure communication. Electron. Lett. 37, 325–327 (2001)

    Article  Google Scholar 

Further Reading

  • A. Bertossi, A. Mei, A residue number system on reconfigurable mesh with application to prefix sums and approximate string matching. IEEE Trans. Parallel Distrib. Syst. 11, 1186–1199 (2000)

    Article  Google Scholar 

  • E. Kinoshita, K.J. Lee, A residue arithmetic extension for reliable scientific computation. IEEE Trans. Comput. 46, 129–138 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ananda Mohan, P.V. (2016). Applications of RNS in Signal Processing. In: Residue Number Systems. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-41385-3_9

Download citation

Publish with us

Policies and ethics