Skip to main content

Gingerol and Its Role in Chronic Diseases

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 929)

Abstract

Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.

Keywords

  • Gingerol
  • Signaling pathways
  • Chronic diseases
  • Physicochemical
  • Biological properties

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-41342-6_8
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-41342-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. Abdul Sani NF, Belani LK, Chong PS et al (2014) Effect of the Combination of Gelam honey and ginger on oxidative stress and metabolic profile in streptozotocin-induced diabetic sprague-dawley rats. Bio Med Res Int. doi:10.1155/2014/160695

    Google Scholar 

  2. Abdullah S, Abidin SAZ, Murad NA, Makpol S, Wan Ngah WZ, Mohd Yusof YA (2010) Ginger extract (Zingiber officinale) triggers apoptosis and G0/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines. Afr J Biochem Res 4:134–142

    Google Scholar 

  3. Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    CAS  PubMed  CrossRef  Google Scholar 

  4. Ahui ML, Champy P, Ramadan A et al (2008) Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. Int Immunopharmacol 8(12):1626–1632

    CAS  PubMed  CrossRef  Google Scholar 

  5. Akimoto M, Iizuka M, Kanematsu R et al (2015) Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS ONE 10(5):e0126605. doi:10.1371/journal.pone.0126605

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  6. Aktan F, Henness S, Tran VH et al (2006) Gingerol metabolite and a synthetic analogue capsarol inhibit macrophage NF-kappa B-mediated iNOS gene expression and enzyme activity. Planta Med 72:27–734

    CrossRef  CAS  Google Scholar 

  7. Al-Amin ZM, Thomson M, Al-Qattan KK et al (2006) Antidiabetic and hypolipidemic properties of ginger in streptozotocin induced diabetic rats. Br J Nutr 96:660–666

    CAS  PubMed  CrossRef  Google Scholar 

  8. Ali BH, Blunden G, Tanira MO et al (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46(2):409–420

    CAS  PubMed  CrossRef  Google Scholar 

  9. Alizadeh-Navaei R, Roozbeh F, Saravi M et al (2008) Investigation of the effect of ginger on the lipid levels. A double blind controlled clinical trial. Saudi Med J 29:1280–1284

    PubMed  Google Scholar 

  10. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    CAS  PubMed  Google Scholar 

  11. Behrens J (2005) The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochem Soc Trans 33:672–675

    CAS  PubMed  CrossRef  Google Scholar 

  12. Bharti AC, Aggarwal BB (2002) Nuclear factor-kappaB and cancer: its role in prevention and therapy. Biochem Pharmacol 64(5–6):883–888

    CAS  PubMed  CrossRef  Google Scholar 

  13. Bhattarai S, Tran VH, Duke CC (2007) Stability of [6]-gingerol and [6]-shogaol in simulated gastric and intestinal fluids. J Pharmaceut Biomed Anal 45:648–653

    CAS  CrossRef  Google Scholar 

  14. Bode AM (2004) Cancer prevention by food factors through targeting signal transduction pathways. Nutr 20(1):80–94. doi:10.1016/j.nut.2003.09

    CrossRef  CAS  Google Scholar 

  15. Bode AM, Dong Z (2004) Ginger. In: Packer L, Ong CN, Halliwell B (eds) Herbal and traditional medicine: molecular aspects of health. Marcel Dekker, New York, pp 131–156

    Google Scholar 

  16. Bode AM, Dong Z (2008) Modulation of cell signal transduction by tea and ginger. In: Dong Z, Surh YJ (ed) Dietary modulation of cell signaling pathways. CRC Press/Taylor & Francis, Boca Raton (FL), pp 45–74

    Google Scholar 

  17. Bode AM, Dong Z (2011) The amazing and mighty ginger. In: Benzie IFF, Wachtel-Galor S (ed) Herbal medicine: biomolecular and clinical aspects, 2nd edn. CRC Press/Taylor & Francis, Boca Raton (FL), pp 129–154

    Google Scholar 

  18. Bode AM, Ma WY, Surh YJ et al (2001) Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Res 61:850–853

    CAS  PubMed  Google Scholar 

  19. Borrelli F, Capasso R, Aviello G et al (2005) Effectiveness and safety of ginger in the treatment of pregnancy induced Nausea and vomiting. Database of abstracts of reviews of effects (DARE): quality assessed reviews [Internet]. Centre for Reviews and Dissemination (UK), York (UK)

    Google Scholar 

  20. Butt MS, Sultan MT (2011) Ginger and its health claims: molecular aspects. Crit Rev Food Sci Nutr 51:383–393

    CAS  PubMed  CrossRef  Google Scholar 

  21. Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    CAS  PubMed  CrossRef  Google Scholar 

  22. Chakraborty D, Mukherjee A, Sikdar S et al (2012) [6]-gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicol Lett 210:34–43

    CAS  PubMed  CrossRef  Google Scholar 

  23. Chang F, Lee JT, Navolanic PM et al (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17(3):590–596

    CAS  PubMed  CrossRef  Google Scholar 

  24. Chen Z, Gibson TB, Robinson F et al (2001) MAP kinases. Chem Rev 101:2449–2476

    CAS  PubMed  CrossRef  Google Scholar 

  25. Citronberg J, Bostick R, Ahern T et al (2013) Effects of ginger supplementation on cell cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, controlled trial. Cancer Prev Res 6:271–281

    CrossRef  Google Scholar 

  26. Clarke RB (2003) p27KIP1 phosphorylation by PKB/Akt leads to poor breast cancer prognosis. Breast Cancer Res 5(3):162–163

    PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Denniff P, Macleod I, Whiting DA (1980) Studies in the biosynthesis of [6]-gingerol, pungent principle of ginger (Zingiber officinale). J Chem Soc Perkin Trans 1:2637–2644

    CrossRef  Google Scholar 

  28. Diehl JA (2002) Cycling to cancer with cyclin D1. Cancer Biol Ther 1(3):226–231

    CAS  PubMed  CrossRef  Google Scholar 

  29. Ding GH, Naora K, Hayashibara M et al (1991) Pharmacokinetics of [6]-gingerol after intravenous administration in rats. Chem Phar Bull (Tokyo) 39:1612–1614

    CAS  CrossRef  Google Scholar 

  30. Dong Z, Birrer MJ, Watts RG et al (1994) Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc Natl Acad Sci U S A 91:609–613

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  31. Dorai T, Aggarwal BB (2004) Role of chemopreventive agents in cancer therapy. Cancer Lett 215:129–140

    CAS  PubMed  CrossRef  Google Scholar 

  32. Dugasani S, Pichika MR, Nadarajah VD et al (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10] gingerol and [6]-shogaol. J Ethnopharmacol 127:515–520

    CAS  PubMed  CrossRef  Google Scholar 

  33. Ernst E, Pittler MH (2000) Efficacy of ginger for nausea and vomiting: a systematic review of randomized clinical trials. Br J Anaesth 84(3):367–371

    CAS  PubMed  CrossRef  Google Scholar 

  34. Flynn DL, Rafferty MF, Boctor AM (1968) Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds. Prostaglandins Leukot Med 24:195–198

    CrossRef  Google Scholar 

  35. Fresno-Vara JA, Casado E, Castro J et al (2004) PI3K/Akt signaling pathway and cancer. Cancer Treatment Rev 30:193–204

    CrossRef  CAS  Google Scholar 

  36. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811

    CAS  PubMed  CrossRef  Google Scholar 

  37. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24

    CAS  PubMed  Google Scholar 

  38. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    CAS  PubMed  CrossRef  Google Scholar 

  39. Gundala SR, Mukkavilli R, Yang C et al (2014) Enterohepatic recirculation of bioactive ginger phytochemicals is associated with enhanced tumor growth-inhibitory activity of ginger extract. Carcinogenesis 35(6):1320–1329. doi:10.1093/carcin/bgu011

    Google Scholar 

  40. Gunning WT, Kramer PM, Steele VE et al (2002) Chemoprevetion by lipoxygenase and leukotriene pathway inhibitors of vinyl carbamate-induced lung tumours in mice. Cancer Res 62:4199–4201

    CAS  PubMed  Google Scholar 

  41. Habib SH, Makpol S, Abdul Hamid NA et al (2008) Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics (Sao Paulo) 63(6):807–813

    CrossRef  Google Scholar 

  42. Harliyansyah H, Murad NA, Wan Ngah WZ et al (2007) Antiproliferative, antioxidant and apoptosis effects of Zingiber officinale and 6-gingerol on HepG2 cells. Asian J Biochem 2(6):421–426

    CrossRef  Google Scholar 

  43. Hiserodt RD, Franzblau SG, Rosen RT (1998) Isolation of 6-, 8-, and 10-gingerol from ginger rhizome by HPLC and preliminary evaluation of inhibition of Mycobacterium avium and Mycobacterium tuberculosis. Agric Food Chem 46:2504–2508

    CAS  CrossRef  Google Scholar 

  44. Huang HC, Chiu SH, Chang TM (2011) Inhibitory effect of [6]-gingerol on melanogenesis in B16F10 melanoma cells and a possible mechanism of action. Biosci Biotechnol Biochem 75(6):1067–1072

    CAS  PubMed  CrossRef  Google Scholar 

  45. Huang HC, Chou YC, Wu CY et al (2013) [8]-gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways. Biochem Biophys Res Commun 438:375–381

    CAS  PubMed  CrossRef  Google Scholar 

  46. Hung JY, Hsu YL, Li CT et al (2009) 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J Agric Food Chem 57:9809–9816

    CAS  PubMed  CrossRef  Google Scholar 

  47. IARC monographs on the evaluation of carcinogenic risks to humans (1994) Lyon, France: international agency for research on cancer; IARC working group on the evaluation of carcinogenic risks to humans, schistomsomes, liver flukes and Helicobacter pylori. Infect Helicobacter pylori 61:177–201

    Google Scholar 

  48. Ippoushi K, Azuma K, Ito H et al (2003) [6]-gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci 73:3427–3437

    CAS  PubMed  CrossRef  Google Scholar 

  49. Ishiguro K, Ando T, Maeda O et al (2007) Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms. Biochem Biophys Res Commun 362(1):218–223

    CAS  PubMed  CrossRef  Google Scholar 

  50. Issa AY, Volate SR, Wargovich MJ (2006) The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compost Anal 19:405–419

    CAS  CrossRef  Google Scholar 

  51. Jemal A, Bray F, Center M et al (2011) Global cancer statistics. CA: Cancer J Clin 61: 69–90

    Google Scholar 

  52. Jeong CH, Bode AM, Pugliese A et al (2009) [6]-gingerol suppresses colon cancer growth by targeting Leukotriene A4 Hydrolase. Cancer Res 69:5584–5591

    CAS  PubMed  CrossRef  Google Scholar 

  53. Jiang H, Solyom AM, Timmermann BN et al (2005) Characterization of gingerol-related compounds in ginger rhizome (Zingiber officinale Rosc.) by high-performance liquid chromatography/ electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19(20):2957–2964

    CAS  PubMed  CrossRef  Google Scholar 

  54. Jiang Y, Turgeon DK, Wright BD et al (2013) Effect of ginger root on cyclooxygenase-1 and 15-hydroxyprostaglandin dehydrogenase expression in colonic mucosa of humans at normal and increased risk for colorectal cancer. Europ J Cancer Prevent 22(5):455–460

    CAS  CrossRef  Google Scholar 

  55. Jolad SD, Lantz RC, Solyon AM et al (2004) Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochem 65:1937–1954

    CAS  CrossRef  Google Scholar 

  56. Jolad SD, Lantz RC, Chen GJ et al (2005) Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochem 66(13):1614–1635

    CAS  CrossRef  Google Scholar 

  57. Joo JH, Hong SS, Cho YR et al (2015) [10]-gingerol inhibits proliferation and invasion of MDA-MB-231 breast cancer cells through suppression of Akt and p38MAPK activity. Oncol Reports. doi:10.3892/or.2015.4405

    Google Scholar 

  58. Kamato D, Rezaei HB, Getachew R et al (2013) (S)-[6]-Gingerol inhibits TGF-β-stimulated biglycan synthesis but not glycosaminoglycan hyperelongation in human vascular smooth muscle cells. J Pharm Pharmacol 65:1026–1036

    CAS  PubMed  CrossRef  Google Scholar 

  59. Katiyar SK, Agarwal R, Mukhtar H (1996) Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinalerhizome. Cancer Res 56(5):1023–1030

    CAS  PubMed  Google Scholar 

  60. Kim EC, Min JK, Kim TY et al (2005) [6]-gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 335(2):300–308

    CAS  PubMed  CrossRef  Google Scholar 

  61. Kim JK, Kim Y, Na KM et al (2007) [6]-Gingerol prevents UVB induced ROS production and COX-2 expression in vitro and in vivo. Free Rad Res 41:603–614

    CAS  CrossRef  Google Scholar 

  62. Kim SO, Kim MR (2013) [6]-gingerol prevents disassembly of cell junctions and activities of MMPs in invasive human pancreas cancer cells through ERK/NF-κB/snail signal transduction pathway. Evid Based Complement Alternat Med 2013:761852. doi:10.1155/2013/761852

    PubMed  PubMed Central  Google Scholar 

  63. Kim SO, Chun KS, Kundu JK et al (2004) Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kB and p38 MAPK in mouse skin. BioFactors 21:27–31

    PubMed  CrossRef  Google Scholar 

  64. Kim SO, Kundu JK, Shin YK et al (2005) [6]-gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappa B in phorbol ester-stimulated mouse skin. Oncogene 24(15):2558–2567

    CAS  PubMed  CrossRef  Google Scholar 

  65. Kiuchi F, Shibuya M, Sankawa U (1982) Inhibitors of prostaglandin biosynthesis from ginger. Chem Pharm Bull (Tokyo) 30:754–757

    CAS  CrossRef  Google Scholar 

  66. Kobayashi M, Ishida Y, Shoji N et al (1988) Cardiotonic action of [8]-gingerol, an activator of the Ca2+-pumping adenosine triphosphatase of sarcoplasmic reticulum, in guinea pig atrial muscle. J Pharmacol Exp Ther 246:667–673

    CAS  PubMed  Google Scholar 

  67. Koo KL, Ammit AJ, Tran VH et al (2001) Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation. Thromb Res 103(5):387–397

    CAS  PubMed  CrossRef  Google Scholar 

  68. Kumar NV, Srinivas P, Bettadaiah BK (2012) New scalable and eco-friendly synthesis of gingerols. Tetrahedron Lett 53:2993–2995

    CrossRef  CAS  Google Scholar 

  69. Lantz RC, Chen GJ, Sarihan M et al (2007) The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomed 14:123–128

    CAS  CrossRef  Google Scholar 

  70. Lee DH, Kim DW, Jung CH et al (2014) Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells. Toxicol Appl Pharmacol 279(3):253–265. doi:10.1016/j.taap.2014.06.030

    Google Scholar 

  71. Lee E, Surh YJ (1998) Induction of apoptosis in HL-60 cells by pungent vanilloids, [6]-gingerol and [6] paradol. Cancer Lett 134:163–168

    CAS  PubMed  CrossRef  Google Scholar 

  72. Lee HS, Seo EY, Kang NE, Kim WK (2008) [6]-Gingerol inhibits metastasis of MDS-MB-231 human breast cancer cells. J Nutr Biochem 19:313–319

    CAS  PubMed  CrossRef  Google Scholar 

  73. Lee SH, Cekanova M, Baek SJ (2008) Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog 47(3):197–208

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Lee C, Park GH, Kim CY et al (2011) [6]-gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food ChemToxicol 49:1261–1269

    CAS  CrossRef  Google Scholar 

  75. Lin CC, Tsay GJ (2012) 6-gingerol inhibits growth of colon cancer cell LoVo via induction of G2/M arrest. Evid Based Complement Alternat Med. doi:10.1155/2012/326096

    Google Scholar 

  76. Ma S, Zhang S, Duan W et al (2009) An enantioselective synthesis of (+)-(S)-[n]-gingerols via the l-proline-catalyzed aldol reaction. Bioorganic Medic Chem Lett 19:3909–3911

    CAS  CrossRef  Google Scholar 

  77. Maeda S, Omata M (2008) Inflammation and cancer: role of nuclear factor-kappa B activation. Cancer Sci 99:836–842

    CAS  PubMed  CrossRef  Google Scholar 

  78. Mahady GB, Pendland SL, Yun GS et al (2003) Ginger (Zingiber officinale Roscoe) and the gingerols inhibit the growth of Cag A+ strains of helicobacter pylori. Anticancer Res 23:3699–3702

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Maier LS, Schwan C, Schillinger W et al (2000) Gingerol, isoproterenol and ouabain normalize impaired post-rest behavior but not force-frequency relation in failing human myocardium. Cardiovasc Res 45:913–924

    CAS  PubMed  CrossRef  Google Scholar 

  80. Moran A, Ortega P, de Juan C et al (2010) Differential colorectal carcinogenesis: molecular basis and clinical relevance. World J Gastrointest Oncol 2:151–158. doi:10.4251/wjgo.v2.i3.151

    PubMed  PubMed Central  CrossRef  Google Scholar 

  81. Nakazawa T, Ohsawa K (2002) Metabolism of [6]-gingerol in rats. Life Sci 70:2165–2175

    CAS  PubMed  CrossRef  Google Scholar 

  82. Neergheen VS, Bahorun T, Taylor EW et al (2010) Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicol 278:229–241

    CAS  CrossRef  Google Scholar 

  83. Nigam N, Bhui K, Prasad S et al (2009) [6]-gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chem Biol Interact 181:77–84

    CAS  PubMed  CrossRef  Google Scholar 

  84. Nigam N, George J, Srivastava S et al (2010) Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B[a]P-induced mouse skin tumorigenesis. Cancer Chemother Pharmacol 65:687–696

    CAS  PubMed  CrossRef  Google Scholar 

  85. Nurtjahja-Tjendraputra E, Ammit AJ, Roufogalis BD et al (2003) Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb Res 111(4–5):259–265

    CAS  PubMed  CrossRef  Google Scholar 

  86. Ojewole JAO (2006) Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res 20:764–772

    PubMed  CrossRef  Google Scholar 

  87. Ozes ON, Mayo LD, Gustin JA et al (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401(6748):82–85

    CAS  PubMed  CrossRef  Google Scholar 

  88. Pana MH, Ho CT (2008) Chemopreventive effects of natural dietary compounds on cancer Development. Chem Soc Rev 37:2558–2574

    CrossRef  CAS  Google Scholar 

  89. Park EJ, Pezzuto JM (2011) Botanicals in cancer chemoprevention. Cancer Metastasis Rev 21:231–255

    CrossRef  Google Scholar 

  90. Park KK, Chun KS, Lee JM et al (1998) Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett 129(2):139–144

    CAS  PubMed  CrossRef  Google Scholar 

  91. Park M, Bae J, Lee DS (2008) Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother Res 22:1446–1449

    CAS  PubMed  CrossRef  Google Scholar 

  92. Park SA, Park IH, Cho JS et al (2012) Effect of [6]-gingerol on myofibroblast differentiation in transforming growth factor beta 1-induced nasal polyp-derived fibroblasts. Am J Rhinol Allergy 26(2):97–103

    PubMed  CrossRef  Google Scholar 

  93. ParkYJ; Wen J, Bang S et al (2006) [6]-gingerol induces cell cycle arrest and cell death of mutant p 53-expressing pancreatic cancer cells. Yonsei Med J 47(5): 688–697

    Google Scholar 

  94. Poltronieri J, Becceneri AB, Fuzer AM et al (2014) [6]-gingerol as a cancer chemopreventive agent: a review of its activity on different steps of the metastatic process. Mini Rev Med Chem 14(4):313–321

    CAS  PubMed  CrossRef  Google Scholar 

  95. Prasad S, Tyagi AK (2015) Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Practice. doi:10.1155/2015/142979

    Google Scholar 

  96. Prescott SM, Fitzpatrick FA (2000) Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta 1470:M69–M67

    CAS  PubMed  Google Scholar 

  97. Radhakrishnan EK, Bava SV, Narayanan SS et al (2014) [6]-gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS ONE, 26:9(8):e104401. doi:10.1371/journal.pone.0104401

    Google Scholar 

  98. Ramirez-Ahumada MC, Timmermann BN, Gang DR (2006) Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Phytochem 67:2017–2029

    CAS  CrossRef  Google Scholar 

  99. Reed J (2001) Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med 7:314–319

    CAS  PubMed  CrossRef  Google Scholar 

  100. Rhode J, Fogoros S, Zick S et al (2007) Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement Alternat Med 7:44

    CrossRef  CAS  Google Scholar 

  101. Riaz H, Begum A, Raza SA et al (2015) Antimicrobial property and phytochemical study of ginger found in local area of Punjab, Pakistan. Internat Curr Pharmaceut J 4(7):405–409

    CrossRef  Google Scholar 

  102. Ryu MJ, Chung HS (2015) [10]-gingerol induces mitochondrial apoptosis through activation of MAPK pathway in HCT116 human colon cancer cells. Vitro Cell Dev Biol Anim 51(1):92–101. doi:10.1007/s11626-014-9806-6

    CAS  CrossRef  Google Scholar 

  103. Scheiman JM, Cutler AF (1999) Helicobacter pylori and gastric cancer. Am J Med 106:222–226

    CAS  PubMed  CrossRef  Google Scholar 

  104. Semwal RB, Semwal DK, Combrinck S et al (2015) Gingerols and shogaols: important nutraceutical principles from ginger. Phytochem 117:554–568

    CAS  CrossRef  Google Scholar 

  105. Shukla Y, Singh M (2007) Cancer preventive properties of ginger: a brief review. Food Chem Toxicol 45(5):683–690

    CAS  PubMed  CrossRef  Google Scholar 

  106. Sporn MB, Dunlop NM, Newton DL et al (1976) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 35:1332–1338

    CAS  PubMed  Google Scholar 

  107. Song G, Quyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71

    CAS  PubMed  CrossRef  Google Scholar 

  108. Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24:96–102

    CAS  PubMed  CrossRef  Google Scholar 

  109. Surh YJ, Lee E, Lee JM (1998) Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat Res 402(1–2):259–267

    CAS  PubMed  CrossRef  Google Scholar 

  110. Surh YJ, Lee SS(1994) Enzymic reduction of gingerol, a major pungent principle of ginger, in the cell-free preparation of rat liver. Life Sci 54:PL321–PL326

    Google Scholar 

  111. Tahir AA, Abdul Sani NF, Morad NA et al (2015) Combined ginger extract and gelam honey modulate Ras/ERK and P13/AKT pathway genes in colon cancer HT29 cells, Nutr J 13:31

    Google Scholar 

  112. Talalay P (2001) The importance of using scientific principles in the development of medicinal agents from plants. Acad Med 76(3):238–247

    CAS  PubMed  CrossRef  Google Scholar 

  113. Tarapore RS, Siddiqui IA, Mukhtar H (2012) Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis 33(3):483–491. doi:10.1093/carcin/bgr305

    CAS  PubMed  CrossRef  Google Scholar 

  114. Townsend EA, Siviski ME, Zhang Y et al (2013) Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol 48(2):157–163. doi:10.1165/rcmb.2012-0231OC

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  115. Vogelstein B, Kinzler KW (1992) p53 function and dysfunction. Cell 70(4):523–526

    CAS  PubMed  CrossRef  Google Scholar 

  116. Vutyavanich T, Kraisin T, Ruangsri R (2001) Ginger for nausea and vomiting in pregnancy: randomized, double-masked, placebo-controlled trial. Obstet Gynecol 97(4):577–582

    CAS  PubMed  Google Scholar 

  117. Wang CC, Chen LG, Lee LT et al (2003) Effects of 6-gingerol, an antioxidant from ginger, on inducing apoptosis in human leukemic HL-60 cells. In Vivo 17:641–645

    CAS  PubMed  Google Scholar 

  118. Wee LH, Morad NA, Aan GJ et al (2015) Mechanism of chemoprevention against colon cancer cells using combined Gelam honey and ginger extract via mTOR and Wnt/β-catenin pathways. Asian Pac J Cancer Prev 16:6549–6556

    Google Scholar 

  119. Wei QY, Ma JP, Cai YJ et al (2005) Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J Ethnopharmacol 102:177–184

    CAS  PubMed  CrossRef  Google Scholar 

  120. Weng CJ, Wu CF, Huang HW et al (2010) Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol Nutr Food Res 54(11):1618–1627

    CAS  PubMed  CrossRef  Google Scholar 

  121. Weng CJ, Chou CP, Ho CT et al (2012) Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol. Mol Nutr Food Res 56(8):1304–1314

    CAS  PubMed  CrossRef  Google Scholar 

  122. Wohlmuth H, Leach DN, Smith MK et al (2005) Gingerol content of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). J Agric Food Chem 53:5772–5778

    CAS  PubMed  CrossRef  Google Scholar 

  123. Wu KK, Wang XJ, Cheng AS et al (2013) Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Crit Rev Oncol/Hemato l86: 251–277

    Google Scholar 

  124. Yagihashi S, Miura Y, Yagasaki K (2008) Inhibitory effect of gingerol on the proliferation and invasion of hepatoma cells in culture. Cytotechnology 57:129–136

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  125. Yang G, Wang S, Zhong L et al (2012) [6]-gingerol induces apoptosis through lysosomal-mitochondrial axis in human hepatoma G2 cells. Phytother Res 26(11):1667–1673

    CAS  PubMed  CrossRef  Google Scholar 

  126. Yang G, Zhong L, Jiang L et al (2010) Genotoxic effect of 6-gingerol on human hepatoma G2 cells. Chem Biol Interact 185(1):12–17

    CAS  PubMed  CrossRef  Google Scholar 

  127. Yoon JH, Baek SJ (2005) Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J 46(5):585–596. doi:10.3349/ymj.2005.46.5.585

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  128. Yoshimi N, Wang A, Morishita Y et al (1992) Modifying effects of fungal and herb metabolites on azoxymethane-induced intestinal carcinogenesis in rats. Jpn J Cancer Res 83(12):1273–1278

    CAS  PubMed  CrossRef  Google Scholar 

  129. Yusof YAM, Ahmad N, Das S et al (2009) Chemopreventive efficacy of ginger (Zingiber officinale) in ethionine induced rat hepatocarcinogenesis. Afr J Tradit Complem Altern Med 6:87–93

    CAS  Google Scholar 

  130. Zhang S, Liu Q, Liu Y et al (2012) Zerumbone, a Southeast Asian ginger sesquiterpene, induced apoptosis of pancreatic carcinoma cells through p53 signaling pathway. Evid Based Complement Alternat Med. doi:10.1155/2012/936030

    Google Scholar 

  131. Zhang YX, Li JS, Chen LH et al (2012) Simultaneous determination of five gingerols in raw and processed ginger by HPLC. Chinese Pharm J 47:471–474

    CAS  Google Scholar 

  132. Zick SM, Djuric Z, Ruffin MT et al (2008) Pharmacokinetics of 6-, 8-, 10-gingerols and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 17(8):1930–1936. doi:10.1158/1055-9965.EPI-07-2934

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  133. Zick SM, Turgeon DK, Ren J et al (2015) Pilot clinical study of the effects of ginger root extract on eicosanoids in colonic mucosa of subjects at increased risk for colorectal cancer. Mol Carcinog 54(9):908–915. doi:10.1002/mc.22163

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Anum Mohd Yusof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohd Yusof, Y.A. (2016). Gingerol and Its Role in Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Drug Discovery from Mother Nature. Advances in Experimental Medicine and Biology, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-319-41342-6_8

Download citation