Skip to main content

Auraptene and Its Role in Chronic Diseases

  • Chapter
  • First Online:
Drug Discovery from Mother Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 929))

Abstract

Auraptene (7-geranyloxycoumarin) is the best known and most abundant prenyloxycoumarin present in nature. It is synthesized by various plant species, mainly those of the Rutaceae and Umbeliferae (Apiaceae) families, comprising many edible fruits and vegetables such as lemons, grapefruit and orange. Auraptene has shown a remarkable effect in the prevention of degenerative diseases, in particular it has been reported to be one the most promising known natural chemopreventive agents against several types of cancer. The aim of this chapter is to review the effects of auraptene in the prevention and treatment of different chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa K, Kawasaki A, Yoshida T, Nesumi H, Nakano M, Ikoma Y, Yano M (2000) Evaluation of auraptene content in citrus fruits and their products. J Agric Food Chem 48(5):1763–1769

    Article  CAS  PubMed  Google Scholar 

  2. Furukawa Y, Okuyama S, Amakura Y, Watanabe S, Fukata T, Nakajima M, Yoshimura M, Yoshida T (2012) Isolation and characterization of activators of ERK/MAPK from Citrus plants. Int J Mol Sci 13(2):1832–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  PubMed  Google Scholar 

  4. Sahebkar A (2011) Citrus auraptene: a potential multifunctional therapeutic agent for nonalcoholic fatty liver disease. Ann Hepatol 10(4):575–577

    CAS  PubMed  Google Scholar 

  5. Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 28(27):6983–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Furukawa Y, Okuyama S, Amakura Y, Watanabe S, Fukata T, Nakajima M, Yoshimura M, Yoshida T (2012) Isolation and characterization of activators of ERK/MAPK from Citrus plants. Int J Mol Sci 13:1832–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furukawa Y, Watanabe S, Okuyama S, Nakajima M (2012) Neurotrophic effect of citrus auraptene: neuritogenic activity in PC12 cells. Int J Mol Sci 13(5):5338–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okuyama S, Minami S, Shimada N, Makihata N, Nakajima M, Furukawa Y (2013) Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. Eur J Pharmacol 699(1–3):118–123

    Article  CAS  PubMed  Google Scholar 

  9. Okuyama S, Yamamoto K, Mori H, Toyoda N, Yoshimura M, Amakura Y, Yoshida T, Sugawara K, Sudo M, Nakajima M, Furukawa Y (2014) Auraptene in the peels of Citrus kawachiensis (Kawachi Bankan) ameliorates lipopolysaccharide-induced inflammation in the mouse brain. Evid Based Complement Altern Med, 408503

    Google Scholar 

  10. McGeer EG, Klegeris A, McGeer PL (2005) Inflammation, the complement system and the diseases of aging. Neurobiol Aging 26(Suppl 1):94–97

    Article  PubMed  Google Scholar 

  11. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marquis A, Genovese S, Epifano F, Grenier D (2012) The plant coumarins auraptene and lacinartin as potential multifunctional therapeutic agents for treating periodontal disease. BMC Complement Altern Med 12:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12(8):887–916

    Article  CAS  PubMed  Google Scholar 

  14. Prince M, Li Y, Childers A, Itoh K, Yamamoto M, Kleiner HE (2009) Comparison of citrus coumarins on carcinogen-detoxifying enzymes in Nrf2 knockout mice. Toxicol Lett 185(3):180–186

    Article  CAS  PubMed  Google Scholar 

  15. Min BK, Hyun DG, Jeong SY, Kim YH, Ma ES, Woo MH (2011) A new cytotoxic coumarin, 7-[(E)-3′,7′-dimethyl-6′-oxo-2′,7′-octadienyl] oxy coumarin, from the leaves of Zanthoxylum schinifolium. Arch Pharmacal Res 34(5):723–726

    Article  CAS  Google Scholar 

  16. Lewis AM, Varghese S, Xu H, Alexander HR (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med 4:48

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka T, de Azevedo MB, Durán N, Alderete JB, Epifano F, Genovese S, Tanaka M, Tanaka T, Curini M (2010) Colorectal cancer chemoprevention by 2 b-cyclodextrin inclusion compounds of auraptene and 40-geranyloxyferulic acid. Int J Cancer 126(4):830–840

    Article  CAS  PubMed  Google Scholar 

  19. Epifano F, Genovese S, Miller R, Majumdar AP (2013) Auraptene and its effects on the re-emergence of colon cancer stem cells. Phytotherapy Res 27(5):784–786

    Article  CAS  Google Scholar 

  20. Krishnan P, Kleiner-Hancock H (2012) Effects of auraptene on IGF-1 stimulated cell cycle progression in the human breast cancer cell line, MCF-7. Int J Breast Cancer, 502092

    Google Scholar 

  21. de Medina P, Genovese S, Paillasse MR, Mazaheri M, Caze-Subra S, Bystricky K, Curini M, Silvente-Poirot S, Epifano F, Poirot M (2010) Auraptene is an inhibitor of cholesterol esterification and a modulator of estrogen receptors. Mol Pharmacol 78(5):827–836

    Article  PubMed  Google Scholar 

  22. Sutherland RL, Musgrove EA (2004) Cyclins and breast cancer. J Mammary Gland Biol Neoplasia 9(1):95–104

    Article  PubMed  Google Scholar 

  23. Krishnan P, Yan KJ, Windler D, Tubbs J, Grand R, Li BD, Aldaz CM, McLarty J, Kleiner-Hancock HE (2009) Citrus auraptene suppresses cyclin D1 and significantly delays N-methyl nitrosourea induced mammary carcinogenesis in female Sprague-Dawley rats. BMC Cancer 9:259

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jang Y, Han J, Kim SJ, Kim J, Lee MJ, Jeong S, Ryu MJ, Seo KS, Choi SY, Shong M, Lim K, Heo JY, Kweon GR (2015) Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1α degradation. Oncotarget 6(35):38127–38138

    PubMed  PubMed Central  Google Scholar 

  25. Moon JY, Kim H, Cho SK (2015) Auraptene, a major compound of supercritical fluid extract of phalsak (Citrus Hassaku Hort ex Tanaka), induces apoptosis through the suppression of mTOR pathways in human gastric cancer SNU-1 Cells. Evid Based Complement Altern Med 2015:402385

    Article  Google Scholar 

  26. Sahebkar A (2011) Potential benefits of supplementation with auraptene in cystic fibrosis. Clin Nutr 30(2):259–260

    Article  CAS  PubMed  Google Scholar 

  27. Razavi BM, Arasteh E, Imenshahidi M, Iranshahi M (2015) Antihypertensive effect of auraptene, a monoterpene coumarin from the genus Citrus, upon chronic administration. Iran J Basic Med Sci 18(2):153–158

    PubMed  PubMed Central  Google Scholar 

  28. Yamada Y, Okamoto M, Kikuzaki H, Nakatani N (1997) Spasmolytic activity of auraptene analogs. Biosci Biotechnol Biochem 61:740–742

    Article  CAS  PubMed  Google Scholar 

  29. Imenshahidi M, Eghbal M, Sahebkar A, Iranshahi M (2013) Hypotensive activity of auraptene, a monoterpene coumarin from Citrus spp. Pharm Biol 51(5):545–549

    Article  CAS  PubMed  Google Scholar 

  30. Kakiuchi N, Senaratne LR, Huang SL, Yang XW, Hattori M, Pilapitiya U, Namba T (1991) Effects of constituents of Beli (Aegle marmelos) on spontaneous beating and calcium-paradox of myocardial cells. Planta Med 57:43–46

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi N, Senda M, Lin S, Goto T, Yano M, Sasaki T, Murakami S, Kawada T (2011) Auraptene regulates gene expression involved in lipid metabolism through PPARα activation in diabetic obese mice. Mol Nutr Food Res 55(12):1791–1797

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Derosa or Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Derosa, G., Maffioli, P., Sahebkar, A. (2016). Auraptene and Its Role in Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Drug Discovery from Mother Nature. Advances in Experimental Medicine and Biology, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-319-41342-6_19

Download citation

Publish with us

Policies and ethics