Eucalyptol and Its Role in Chronic Diseases

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 929)


Patients with chronic diseases such as cardiovascular diseases, chronic respiratory diseases, and neurological diseases have been shown to benefit from treatments such as aromatherapy in addition to medication. Most chronic diseases are caused by chronic inflammation and oxidative stress as well as harmful factors. Eucalyptol (1,8-cineole), a terpenoid oxide isolated from Eucalyptus species, is a promising compound for treating such conditions as it has been shown to have anti-inflammatory and antioxidant effects in various diseases, including respiratory disease, pancreatitis, colon damage, and cardiovascular and neurodegenerative diseases. Eucalyptol suppresses lipopolysaccharide (LPS)-induced proinflammatory cytokine production through the action of NF-κB, TNF-α, IL-1β, and IL-6 and the extracellular signal-regulated kinase (ERK) pathway, and reduces oxidative stress through the regulation of signaling pathways and radical scavenging. The effects of eucalyptol have been studied in several cell and animal models as well as in patients with chronic diseases. Furthermore, eucalyptol can pass the blood–brain barrier and hence can be used as a carrier to deliver drugs to the brain via a microemulsion system. In summary, the various biological activities of eucalyptol such as its anti-inflammatory and antioxidant properties, as well as its physicochemical characteristics, make this compound a potentially important drug for the treatment of chronic diseases.


Eucalyptol Chronic disease Anti-inflammatory Antioxidant 


  1. 1.
    Aparicio S, Alcalde R, Davila MJ, Garcia B, Leal JM (2007) Properties of 1,8-cineole: a thermophysical and theoretical study. J Phys Chem B 111(12):3167–3177. doi: 10.1021/jp067405b CrossRefPubMedGoogle Scholar
  2. 2.
    Bastos VP, Gomes AS, Lima FJ, Brito TS, Soares PM, Pinho JP, Magalhaes PJ (2011) Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged Guinea pigs. Basic Clin Pharmacol Toxicol 108(1):34–39. doi: 10.1111/j.1742-7843.2010.00622.x CrossRefPubMedGoogle Scholar
  3. 3.
    Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18(6):655–673CrossRefPubMedGoogle Scholar
  4. 4.
    Edwards T (2005) Inflammation, pain, and chronic disease: an integrative approach to treatment and prevention. Altern Ther Health Med 11(6), 20–27; quiz 28, 75Google Scholar
  5. 5.
    Elwood P, Galante J, Pickering J, Palmer S, Bayer A, Ben-Shlomo Y, Gallacher J (2013) Healthy lifestyles reduce the incidence of chronic diseases and dementia: evidence from the Caerphilly cohort study. PLoS ONE 8(12):e81877. doi: 10.1371/journal.pone.0081877 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121(11):2381–2386. doi: 10.1002/ijc.23192 CrossRefPubMedGoogle Scholar
  7. 7.
    Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9. doi: 10.1093/gerona/glu057 CrossRefPubMedGoogle Scholar
  8. 8.
    Greiner JF, Muller J, Zeuner MT, Hauser S, Seidel T, Klenke C, Kaltschmidt C (2013) 1,8-Cineol inhibits nuclear translocation of NF-kappaB p65 and NF-kappaB-dependent transcriptional activity. Biochim Biophys Acta 1833(12):2866–2878. doi: 10.1016/j.bbamcr.2013.07.001 CrossRefPubMedGoogle Scholar
  9. 9.
    Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Mackman N (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98(5):1429–1439CrossRefPubMedGoogle Scholar
  10. 10.
    He X, Wei Z, Zhou E, Chen L, Kou J, Wang J, Yang Z (2015) Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-kappaB and MAPK signaling pathways in LPS-induced mastitis in mice. Int Immunopharmacol 28(1):470–476. doi: 10.1016/j.intimp.2015.07.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Juergens UR (2014) Anti-inflammatory properties of the monoterpene 1.8-cineole: current evidence for co-medication in inflammatory airway diseases. Drug Res (Stuttg), 64(12), 638–646. doi: 10.1055/s-0034-1372609 Google Scholar
  12. 12.
    Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H (2003) Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 97(3):250–256CrossRefPubMedGoogle Scholar
  13. 13.
    Jun YS, Kang P, Min SS, Lee JM, Kim HK, Seol GH (2013) Effect of eucalyptus oil inhalation on pain and inflammatory responses after total knee replacement: a randomized clinical trial. Evid Based Complement Alternat Med 2013:502727. doi: 10.1155/2013/502727 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kehrl W, Sonnemann U, Dethlefsen U (2004) Therapy for acute nonpurulent rhinosinusitis with cineole: results of a double-blind, randomized, placebo-controlled trial. Laryngoscope 114(4):738–742. doi: 10.1097/00005537-200404000-00027 CrossRefPubMedGoogle Scholar
  15. 15.
    Khan A, Vaibhav K, Javed H, Tabassum R, Ahmed ME, Khan MM, Islam F (2014) 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer’s disease. Neurochem Res 39(2):344–352. doi: 10.1007/s11064-013-1231-9 CrossRefPubMedGoogle Scholar
  16. 16.
    Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 3(1):73–80CrossRefPubMedGoogle Scholar
  17. 17.
    Kim KY, Lee HS, Seol GH (2015) Eucalyptol suppresses matrix metalloproteinase-9 expression through an extracellular signal-regulated kinase-dependent nuclear factor-kappa B pathway to exert anti-inflammatory effects in an acute lung inflammation model. J Pharm Pharmacol 67(8):1066–1074. doi: 10.1111/jphp.12407 CrossRefPubMedGoogle Scholar
  18. 18.
    Kim KY, Seo HJ, Min SS, Park M, Seol GH (2014) The effect of 1,8-cineole inhalation on preoperative anxiety: a randomized clinical trial. Evid Based Complement Alternat Med 2014:820126. doi: 10.1155/2014/820126 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lahlou S, Figueiredo AF, Magalhaes PJ, Leal-Cardoso JH (2002) Cardiovascular effects of 1,8-cineole, a terpenoid oxide present in many plant essential oils, in normotensive rats. Can J Physiol Pharmacol 80(12):1125–1131CrossRefPubMedGoogle Scholar
  20. 20.
    Lima PR, de Melo TS, Carvalho KM, de Oliveira IB, Arruda BR, de Castro Brito GA, Santos FA (2013) 1,8-cineole (eucalyptol) ameliorates cerulein-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-kappaB activity in mice. Life Sci 92(24–26):1195–1201. doi: 10.1016/j.lfs.2013.05.009 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu CH, Chang FY (2011) Development and characterization of eucalyptol microemulsions for topic delivery of curcumin. Chem Pharm Bull (Tokyo) 59(2):172–178CrossRefGoogle Scholar
  22. 22.
    Miyazawa M, Shindo M, Shimada T (2001) Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Drug Metab Dispos 29(2):200–205PubMedGoogle Scholar
  23. 23.
    Moon HK, Kang P, Lee HS, Min SS, Seol GH (2014) Effects of 1,8-cineole on hypertension induced by chronic exposure to nicotine in rats. J Pharm Pharmacol 66(5):688–693. doi: 10.1111/jphp.12195 CrossRefPubMedGoogle Scholar
  24. 24.
    Moss M, Oliver L (2012) Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther Adv Psychopharmacol 2(3):103–113. doi: 10.1177/2045125312436573 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Osiecki H (2004) The role of chronic inflammation in cardiovascular disease and its regulation by nutrients. Altern Med Rev 9(1):32–53PubMedGoogle Scholar
  26. 26.
    Ryan KA, Smith MF Jr, Sanders MK, Ernst PB (2004) Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect Immun 72(4):2123–2130CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ryu S, Park H, Seol GH, Choi IY (2014) 1,8-Cineole ameliorates oxygen-glucose deprivation/reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia. J Pharm Pharmacol 66(12):1818–1826. doi: 10.1111/jphp.12295 CrossRefPubMedGoogle Scholar
  28. 28.
    Sadlon AE, Lamson DW (2010) Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Altern Med Rev 15(1):33–47PubMedGoogle Scholar
  29. 29.
    Santos FA, Silva RM, Campos AR, De Araujo RP, Lima Junior RC, Rao VS (2004) 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol 42(4):579–584. doi: 10.1016/j.fct.2003.11.001 CrossRefPubMedGoogle Scholar
  30. 30.
    Singh HP, Mittal S, Kaur S, Batish DR, Kohli RK (2009) Characterization and antioxidant activity of essential oils from fresh and decaying leaves of Eucalyptus tereticornis. J Agric Food Chem 57(15):6962–6966. doi: 10.1021/jf9012407 CrossRefPubMedGoogle Scholar
  31. 31.
    Soares MC, Damiani CE, Moreira CM, Stefanon I, Vassallo DV (2005) Eucalyptol, an essential oil, reduces contractile activity in rat cardiac muscle. Braz J Med Biol Res 38(3):453–461. doi: 10.1590//S0100-879X2005000300017 CrossRefPubMedGoogle Scholar
  32. 32.
    Worth H, Dethlefsen U (2012) Patients with asthma benefit from concomitant therapy with cineole: a placebo-controlled, double-blind trial. J Asthma 49(8):849–853. doi: 10.3109/02770903.2012.717657 CrossRefPubMedGoogle Scholar
  33. 33.
    Worth H, Schacher C, Dethlefsen U (2009) Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: a placebo-controlled double-blind trial. Respir Res 10:69. doi: 10.1186/1465-9921-10-69 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhao C, Sun J, Fang C, Tang F (2014) 1,8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. Inflammation 37(2):566–572. doi: 10.1007/s10753-013-9770-4 CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou JY, Wang XF, Tang FD, Zhou JY, Lu GH, Wang Y, Bian RL (2007) Inhibitory effect of 1,8-cineol (eucalyptol) on Egr-1 expression in lipopolysaccharide-stimulated THP-1 cells. Acta Pharmacol Sin 28(6):908–912. doi: 10.1111/j.1745-7254.2007.00555.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Basic Nursing ScienceSchool of Nursing, Korea UniversitySeoulRepublic of Korea
  2. 2.Department of Nursing ScienceSchool of Nursing, Gachon UniversityIncheonRepublic of Korea

Personalised recommendations