Abstract
Indole-3-carbinol (I3C), a common phytochemical in cruciferous vegetables, and its condensation product, 3,3’-diindolylmethane (DIM) exert several biological activities on cellular and molecular levels, which contribute to their well-recognized chemoprevention potential. Initially, these compounds were classified as blocking agents that increase drug-metabolizing enzyme activity. Now it is widely accepted that I3C and DIM affect multiple signaling pathways and target molecules controlling cell division, apoptosis, or angiogenesis deregulated in cancer cells. Although most of the current data support the role of I3C and DIM in prevention of hormone-dependent cancers, it seems that their application in prevention of the other cancer as well as cardiovascular disease, obesity, and diabetes reduction is also possible. This chapter summarizes the current experimental data on the I3C and DIM activity and the results of clinical studies indicating their role in prevention of chronic diseases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelrahim M, Ewman K, Vanderlaag K et al (2006) 3,3’-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 27:717–728
Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215
Ahmad A, Sarkar WA, Rahman KMW (2011) Role of nuclear factor-kappa B signaling in anticancer properties of indole compounds. J Exp Clin Med 3:55–62
Ahmad A, Biersack B, Li Y et al (2013) Targeted regulation of PI3 K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anticancer Agents Med Chem 13:1002–1013
Anderto MJ, Manson MM, Verschoyle RD et al (2004) Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin Cancer Res 10:5233–5241
Anderton MJ, Manson MM, Verschoyle R et al (2004) Physiological modeling of formulated and crystalline 3,3’-diindolylmethane pharmacokinetics following oral administration in mice. Drug Metab Dispos 32:632–638
Arora A, Seth K, Kalra N, Shukla Y (2005) Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol. Toxicol Appl Pharmacol 202:237–243
Arora A, Shukla Y (2003) Modulation of vinca-alkaloid induced P-glycoprotein expression by indole-3-carbinol. Cancer Lett 189:167–173
Arneson DW, Hurwitz A, McMahon LM et al (1999) Presence of 3.3’-diindolylmethane in human plasma after oraladministration of indole-3-carbinol. Proc Am Assoc Cancer Res 40:429
Beaver LM, Yu TW, Sokolowski EI et al (2012) 3,3’-Diindolylmethane, but notindole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol Appl Pharmacol 263:345–351
Bell MC, Crowley-Nowick P, Bradlow HL et al (2000) Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol 78:123–129
Bhuiyan MM, Li Y, Banerjee S et al (2006) Down-regulation of androgen receptor by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive LNCaP and insensitive C4-2B prostate cancer cells. Cancer Res 66:10064–10072
Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130
Bradlow HL, Michnovicz JJ, Halper M et al (1994) Long-term responses of women to indole-3-carbinol or a high fiber diet. Cancer Epidemiol Biomarkers Prev 3:591–595
Bradlow HL (2008) Review. Indole-3-carbinol as a chemoprotective agent in breast and prostate cancer. In Vivo 22:441–445
Bray F, Ren JS, Masuyer E et al (2013) Global estimates of cancer prevalence for 27 sites in the adult population in2008. Int J Cancer 132:1133–1145
Brait M, Sidransky D (2011) Cancer epigenetics: above and beyond. Toxicol Mech Methods 21:275–288
Brew CT, Aronchik I, Hsu JC et al (2006) Indole-3-carbinol activates the ATM signaling pathway independent of DNA damage to stabilize p53 and induce G1 arrest of human mammary epithelial cells. Int J Cancer 118:857–868
Chang HP, Wang ML, Hsu CY et al (2011) Supression of inflammation-associated factors by indole-3-carbinol in mice fed high-fat diets and in isolated, co-cultured macrophages and adipocytes. Int J Obes 35:1530–1538
Chen DZ, Qi M, Auborn KJ et al (2001) Indole-3-carbinol and diindolylmethane induce apoptosis of human cervical cancer cells and in murine HPV16-transgenic preneoplasticcervical epithelium. J Nutr 131:3294–3302
Chen D, Banerjee S, Cui QC et al (2012) Activation of AMP-activated protein kinase by 3,3’-Diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS ONE 7:e47186
Chen D, Carter TH, Auborn KJ (2004) Apoptosis in cervical cancer cells: implications for adjunct anti-estrogen therapy for cervical cancer. Anticancer Res 24:2649–2656
Chinni SR, Li Y, Upadhyay S et al (2001) Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 20:2927–2936
Chinni SR, Sarkar FH (2002) Akt inactivation is a key event in indole-3-carbinolinduced apoptosis in PC-3 cells. Clin Cancer Res 8:1228–1236
Cho HJ, Park SY, Kim EJ et al (2011) 3,3′- diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Mol Carcinog 50:100–112
Choi Y, Kim Y, Park S et al (2012) Indole-3-carbinolprevents diet-induced obesity through modulation of multiple genes related to adipogenesis, thermogenesis or inflammation in the visceral adipose tissue of mice. J Nutr Biochem 23:1732–1739
Choi Y, Um SJ, Park T (2013) Indole-3-carbinol directly targets SIRT1 to inhibit adipocyte differentiation. Int J Obes (Lond) 37:881–884
Christensen JG, LeBlanc GA (1996) Reversal of multidrug resistance in vivo by dietary administration of the phytochemical indole-3-carbinol. Cancer Res 56:574–581
Cope RB, Loehr C, Dashwood R et al (2006) Ultraviolet radiation-induced non-melanoma skin cancer in the Crl:SKH1:hr-BR hairless mouse: augmentation of tumor multiplicity by chlorophyllin and protection by indole-3-carbinol. Photochem Photobiol Sci 5(5):499–507
Cover MC, Hsieh SJ, Tran SH et al (1998) Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling. J Biol Chem 273:3838–3847
Cover CM, Hsieh SJ, Cram EJ et al (1999) Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells. Cancer Res 59:1244–1251
Cram EJ, Liu BD, Bjeldanes LF et al (2001) Indole-3-carbinol inhibits CDK6 expression in human MCF-7 breast cancer cells by disrupting Sp1 transcription factor interactions with a composite element in the CDK6 gene promoter. J Biol Chem 276:22332–22340
Dalessandri KM, Firestone GL, Fitch MD et al (2004) Pilot study: effect of 3, 3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. Nutr Cancer 50:161–167
Dashwood RH, Fong AT, Arbogast DN et al (1994) Anticarcinogenic activity of indole-3-carbinol acid products: ultrasensitive bioassay by trout embryo microinjection. Cancer Res 54:3617–3619
Dashwood RH (1998) Indole-3-carbinol: anticarcinogen or tumor promoter in brassica vegetables? Chem Biol Interact 110:1–5
Deng W, Zong J, Bian Z et al (2013) Indole-3-carbinolprotects against pressure overload induced cardiac remodeling via activating AMPK-α. Mol Nutr Food Res 57:1680–1687
Denis LJ, Griffiths K (2000) Endocrine treatment in prostate cancer. Semin Surg Oncol 18:52–74
de Bilderling G, Bodart E, Lawson G et al (2005) Successful use of intralesional and intravenous Cidofovir in association withindole-3-carbinol in an 8-year-old girl with pulmonary papillomatosis. J Med Virol 75:332–335
De Kruif CA, Marsman JW, Venekamp JC et al (1991) Structure elucidation of acid reaction products of indole-3-carbinol: detection in vivo and enzyme induction in vitro. Chem Biol Interact 80:303–315
Del Priore G, Gudipudi DK, Montemarano N et al (2010) Oral diindolylmethane (DIM): pilot evaluation of a nonsurgical treatment for cervicaldysplasia. Gynecol Oncol 116:464–467
Donald S, Verschoyle RD, Greaves P et al (2004) Dietary agent indole-3-carbinol protects female rats against the hepatotoxicity of the antitumor drug ET-743 (trabectidin) without compromising efficacy in a rat mammary carcinoma. Int J Cancer 111:961–967
Dunn SE, LeBlanc GA (1994) Hypocholesterolemic properties of plant indoles. Inhibition of acyl-CoA:cholesterol acyltransferase activity and reduction of serum LDL/VLDL cholesterol levels by glucobrassicin derivatives. BiochemPharmacol 47:359–364
Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8:1249–1256
Fan S, Meng Q, Auborn K et al (2006) BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer 94:407–426
Fares F (2014) The anti-carcinogenic effect of indole-3-carbinol and 3,3’-diindolylmethane and mechanism of action. Med Chem. doi:10.4172/2161-0444.S1-002
Fuentes F, Paredes-Gonzalez X, Kong AT (2015) Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3’-diindolylmethane: anti-oxidative stress/inflammation, nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep 1:179–196
Fujioka N, Ainslie-Waldman CE, Upadhyaya P et al (2014) Urinary 3,3′-diindolylmethane: a biomarker of glucobrassicin exposure and indole-3-carbinol uptake in humans. Cancer Epidemiol Biomark Prev 23:282–287
Garcia HH, Brar GA, Nguyen DH et al (2005) Indole-3-Carbinol (I3C) inhibits cyclin-dependent kinase-2 function in human breast cancer cells by regulating the size distribution, associated cyclin E forms, and subcellular localization of the CDK2 protein complex. J Biol Chem 280:8756–8764
Garikapaty VP, Ashok BT, Chen YG et al (2005) Anti-carcinogenic and anti-metastatic properties of indole-3-carbinol in prostate cancer. Oncol Rep 13:89–93
Ge X, Fares FA, Yannai S (1999) Induction of apoptosis in MCF-7 cells by indole-3-carbinol is independent of p53 and bax. Anticancer Res 19:3199–3203
Guan H, Chen C, Zhu L et al (2013) Indole-3-carbinolblocks platelet-derived growth factor-stimulated vascular smooth muscle cell function and reduces neointima formation in vivo. J NutrBiochem 24:62–69
Hayes JD, Dinkova-Kostova AT, McMahon M (2009) Cross-talk between transcription factors AhR and Nrf2: lessons for cancer chemoprevention from dioxin. Toxicol Sci 111:199–201
Heath EI, Heilbrun LK, Li J (2010) Phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′- Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Transl Res 2:402–411
Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308
Hong C, Kim HA, Firestone GL et al (2002) 3,3’-Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis 23:1297–1305
Horn TL, Reichert MA, Bliss RL (2002) Modulations of P450 mRNA in liver and mammary gland and P450 activities and metabolism of estrogen in liver by treatment of rats with indole-3-carbinol. Biochem Pharmacol 64:393–404
Hwang JW, Jung JW, Lee YS et al (2008) Indole-3-carbinol prevents H(2)O(2)-induced inhibition of gap junctional intercellular communication by inactivation of PKB/Akt. J Vet Med Sci 70:1057–1063
International Agency for Research on Cancer (1999) Monographs on the evolution of carcinogenic risks to humans: hormonal contraception and postmenopausal hormone therapy, vol 72. IARC, Lyon, France
Izzotti A, Calin GA, Steele VE et al (2010) Chemoprevention of cigarette smoke-induced alterations of microRNA expression in rat lungs. Cancer Prev Res 3:62–72
Jayakumar P, Pugalendi KV, Sankaran M (2014) Attenuation of hyperglycemia-mediated oxidative stress by indole-3-carbinol and its metabolite 3, 3’- diindolylmethane in C57BL/6 J mice. J Physiol Biochem 70:525–534
Jin L, Qi M, Chen DZ et al (1999) Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer Res 59:3991–3997
Jin Y (2011) 3,3’-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation. Mol Cell Biochem 358:345–354
Kassie F, Anderson LB, Scherber R et al (2007) Indole-3-carbinol inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo(a)pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res 67:6502–6511
Kassie F, Kalscheuer S, Matise I et al (2010) Inhibition of vinyl carbamate-induced pulmonary adenocarcinoma by indole-3-carbinol and myo-inositol in A/J mice. Carcinogenesis 31:239–245
Kassie F, Melkamu T, Endalew A et al (2010) Inhibition of lungcarcinogenesis and critical cancer-related signaling pathways by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-l-cysteine, indole-3-carbinol and myo-inositol, alone and in combination. Carcinogenesis 31:1634–1641
Kim DJ, Han BS, Ahn B et al (1997) Enhancement by indole-3-carbinol of liver and thyroid gland neoplastic development in a rat medium-term multiorgan carcinogenesis model. Carcinogenesis 18:377–381
Kim EJ, Park Sy, Shin et al (2007) Activation of caspase-8 contributes to 3,3’-Diindolylmethane-induced apaptosis in colon cancer cells. J Nutr 137:31–36
Kojima T, Tanaka T, Mori H (1994) Chemoprevention of spontaneous endometrial cancer in female Donryu rats by dietary indole-3-carbinol. Cancer Res 54:1446–1449
Kong D, Heath E, Chen W et al (2012) Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS ONE 7:e33729
Kong D, Heath E, Chen W et al (2012) Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res 4:14–23
Kumi-Diaka J, Merchant K, Haces A et al (2010) Genistein-selenium combination induces growth arrest in prostate cancer cells. J Med Food 13:842–850
Kumar MM, Davuluri S, Poojar S et al (2015) Role of estrogen receptor alpha in human cervical cancer-associated fibroblasts: a transcriptomic study. Tumour Biol Oct 24 [Epub ahead of print]
Lawrence T (2009) The nuclear factor NF-κB pathway in Inflammation. Cold Spring Harb Perspect Biol 1:a001651. doi:10.1101/cshperspect.a001651
Le HT, Schaldach CM, Firestone GL et al (2003) Plant-derived 3,3’-Diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem 278:21136–21145
Leong H, Riby JE, Firestone GL et al (2004) Potent ligand-independent estrogen receptor activation by 3,3′-diindolylmethane is mediated by cross talk between the protein kinase A and mitogen-activated protein kinase signaling pathways. Mol Endocrinol 18:291–302
Li Y, Li X, Sarkar FH (2003) Gene expression profiles of I3C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. J Nutr 133:1011–1019
Li Y, Wang Z, Kong D et al (2007) Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3’-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem 282:21542–21550
Li Y, VandenBoomII TG, Wang Z et al (2010) miRNA146a suppresses invasion of pancreatic cancer cells. Cancer Res 70:1486–1495
Lian JP, Word B, Taylor S et al (2004) Modulation of the constitutive activated STAT3 transcription factor in pancreatic cancer prevention: effects of indole-3-carbinol (I3C) and genistein. Anticancer Res 24:133–137
Licznerska BE, Szaefer H, Murias M et al (2013) Modulation of CYP19 expression by cabbage juices and their active components: indole-3-carbinol and 3,3’-diindolylmethane in human breast epithelial cell lines. Eur J Nutr 52:1483–1492
Lo R, Matthews J (2013) The aryl hydrocarbon receptor and estrogen receptoralpha differentially modulate nuclear factor erythroid-2-related factor2 transactivation in MCF-7 breast cancer cells. Toxicol Appl Pharmacol 270:139–148
Lu Q, Nakmura J, Savinov A et al (1996) Expression of aromatase protein and messenger ribonucleic acid in tumor epithelial cells and evidence of functional significance of locally produced estrogen in human breast cancer. Endocrinology 137:3061–3068
Luo J, Manning BD, Cantley LC (2003) Targeting the PI3 K-Akt pathway in human cancer: rationale andpromise. Cancer Cell 4:257–262
Lynn A, Collins A, Fuller Z et al (2006) Cruciferous vegetables and colorectal cancer. Proc Nutr Soc 65:135–144
Maiyoh GK, Kuh JE, Casaschi A et al (2007) Cruciferous indole-3-carbinol inhibits apolipoprotein B secretion in HepG2 cells. J Nutr 137:2185–2189
Marconett CN, Singhal AK, Sundar SN et al (2012) Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol 363:74–84
McGuire KP, Ngoubilly N, Neavyn M et al (2006) 3,3′-diindolylmethane and paclitaxel act synergistically to promote apoptosis in HER2/Neu human breast cancer cells. J Surg Res 132:208–213
Melkamu T, Zhang X, Tan J et al (2010) Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31:252–258
Meng Q, Qi M, Chen DZ et al (2000) Suppression of breast cancer invasion and migration by indole-3-carbinol: associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. J Mol Med 78:155–165
Mesnil M, Crespin S, Avanzo JL et al (2005) Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta 1719:125–145
Michnovicz JJ, Adlercreutz H, Bradlow HL (1997) Changes in levels of urinary estrogen metabolites after oral indole-3-carbinol treatment in humans. J Natl Cancer Inst 89:718–723
Mulvey L, Chandrasekaran A, Liu K et al (2007) Interplay of genes regulated by estrogen and diindolylmethane in breast cancer cell lines. Mol Med 13:69–78
Nakamura Y, Yogosawa S, Izutani Y et al (2009) A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Aktphosphorylation and progression of autophagy. Mol Cancer 8:100. doi:10.1186/1476-4598-8-100
Nachshon-Kedmi M, Yannai S, Haj A et al (2003) Indole-3-carbinol and 3,3’-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol 41:745–752
Oganesian A, Hendricks JD, Williams DE (1997) Long term dietary indole-3-carbinol inhibits diethylnitrosamine-initiated hepatocarcinogenesis in the infant mouse model. Cancer Lett 118:87–94
Ohtake F, Fujii-Kuriyama Y, Kawajiri K et al (2011) Cross-talk of dioxin and estrogen receptor signals through the ubiquitin system. J Steroid Biochem Mol Biol 127:102–107
Pagliaro B, Santolamazza C, Simonelli F et al (2015) Phytochemical compounds and protection from cardiovascular diseases: a state of the art. BioMed Res Int. doi:10.1155/2015/918069
Paik WH, Kim HR, Park JK et al (2013) Chemosensitivity induced by down-regulation of MicroRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res 33:1473–1482
Park MK, Rhee YH, Lee HJ et al (2008) Antiplatelet and antithrombotic activity of indole-3-carbinolin vitro and in vivo. Phytother Res 22:58–64
Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183
Penning TM, Burczynski ME, Jez JM et al (2000) Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 351:67–77
Qian X, Melkamu T, Upadhyaya P et al (2011) Indole-3-carbinol inhibited tobacco smokecarcinogen-induced lung adenocarcinoma in A/J mice when administered during the post-initiation or progression phase of lung tumorigenesis. Cancer Lett 311:57–65
Rahman KM, Aranha O, Sarkar FH (2003) Indole-3-carbinol (I3C) induces apoptosis in tumorigenic but not in nontumorigenic breast epithelial cells. Nutr Cancer 45:101–112
Rajoria S, Suriano R, Parmar PS et al (2011) 3,3’-diindolylmethane modulates estrogen metabolism in patients with thyroid proliferative disease: a pilot study. Thyroid 21:299–304
Reed GA, Peterson KS, Smith HJ et al (2005) A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomark Prev 14:1953–1960
Rice JC, Ozcelik H, Maxeiner P et al (2000) Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis 21:1761–1765
Rosen CA, Woodson GE, Thompson JW et al (1998) Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg 118:810–815
Rosen CA, Bryson PC (2004) Indole-3-carbinol for recurrent respiratory papillomatosis: long-term results. J Voice 18:248–253
Sarkar FH, Li Y, Wang Z et al (2009) Cellular signaling perturbation by natural products. Cell Signal 21:1541–1547
Sarkar FH, Li Y (1997) Indole-3-carbinol and prostate cancer. J Nutr 134:3493S–3498S
Sarkar S, Dubaybo H, Ali S et al (2013) Down-regulation of miR-221 inhibits proliferation of pancreatic cancer cells through up-regulation of PTEN, p27(kip1), p57(kip2), and PUMA.Am. J Cancer Res 3:465–477
Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTORsignalling controls tumour cell growth. Nature 441:424–430
Singhal R, Shankar K, Badger TM et al (2008) Estrogenic status modulatesaryl hydrocarbon receptor-mediated hepatic gene expression andcarcinogenicity. Carcinogenesis 29:227–236
Szaefer H, Krajka-Kuźniak V, Licznerska B (2015) Cabbage juices and indoles modulate the expression profile of AhR, ERα, and Nrf2 in human breast cell lines. Nutr Cancer 67:1342–1345
Śmiechowska A, Bartoszek A, Namieśnik J (2008) Cancer chemopreventive agents: Glucosinolates and their decomposition products in white cabbage (Brassica oleracea var. Capitata). Postepy Hig Med Dosw (online) 62:125–140
Tadi K, Chang Y, Ashok BT et al (2005) 3,3’-Diidolylmethane, a cruciferous vegetable derived synthetic antiprolifereative compound in thyroid disease. Biochem Biophys Res Commun 337:1019–1025
Terry P, Wolk A, Persson I et al (2001) Brassica vegetables and breast cancer risk. JAMA 285:2975–2977
van Poppel G, Verhoeven DT, Verhagen H et al (1999) Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 472:159–168
Vahid F, Zand H, Nosrat-Mirshekarlou E et al (2015) The role dietary of bioactivecompounds on the regulation of histone acetylases and deacetylases: a review. Gene 562:8–15
Vang O (2006) Chemopreventive potential of compounds in Cruciferous vegetables. In: Baer-Dubowska W, Bartoszek A, Malejka-Giganti D (eds) Carcinogenic and anticarcinogenic food components. CRC Taylor & Francis, Boca Raton, pp 303–328
Verhagen H, Poulsen HE, Loft S et al (1995) Reduction of oxidative DNA-damage in humans by brussels sprouts. Carcinogenesis 16:969–970
Wattenberg LW, Loub WD (1978) Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res 38:1410–1413
Wattenberg LW, Loub WD, Lam LK, Speier JL (1976) Dietary constituents altering the responses to chemical carcinogens. Fed Proc 35:1327–1331
Wattenberg LW, Hanley AB, Barany G et al (1985) Inhibition of carcinogenesis by some minor dietary constituents. Princess Takamatsu Symp 16:193–203
WHO Report Part II 2015
Wilson CA, Ramos L, Villaseñor MR et al (1999) Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet 21:236–240
Witter DC, Le Bas J (2008) Cancer as a chronic disease. Oncology 53:1–3
Wong GY, Bradlow L, Sepkovic D et al (1997) Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl 28–29:111–116
Wong CP, Hsu A, Buchanan A et al (2014) Effects of sulforaphane and 3,3′-diindolylmethane on genome-wide promoter methylation in normalprostate epithelial cells and prostate cancer cells. PLoS ONE 9:e86787. doi:10.1371/journal.pone.0086787
Wu TY, Khor TO, Su ZY et al (2013) Epigenetic modifications of Nrf2 by 3,3′-diindolylmethanein vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS J 15:864–874
Xu M, Orner GA, Bailey GS et al (2001) Post-initiation effects of chlorophyllin and indole-3-carbinol in rats given 1,2-dimethylhydrazine or 2-amino-3- methylimidazo[4, 5-f]quinoline. Carcinogenesis 22:309–314
Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830
Yoshida M, Katashima S, Ando J et al (2004) Dietary indole-3-carbinol promotes endometrial adenocarcinoma development in rats initiated with N-ethyl-N’-nitro-N-nitrosoguanidine, with induction of cytochrome P450 s in the liver and consequent modulation of estrogen metabolism. Carcinogenesis 25:2257–2264
Zhang J, Hsu BAJC, Kinseth BAMA et al (2003) Indole-3-carbinol induces a G1 cell cycle arrest and inhibits prostate-specificantigen production in human LNCaP prostate carcinoma cells. Cancer 98:2511–2520
Zhu J, Li Y, Guan C et al (2012) Anti-proliferative and pro-apoptotic effects of 3, 3’-diindolylmethane in human cervical cancer cells. Oncol Rep 28:1063–1068
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Licznerska, B., Baer-Dubowska, W. (2016). Indole-3-Carbinol and Its Role in Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-41334-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-41334-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41332-7
Online ISBN: 978-3-319-41334-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)