Skip to main content

Boswellic Acids and Their Role in Chronic Inflammatory Diseases

  • Chapter
  • First Online:
Anti-inflammatory Nutraceuticals and Chronic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 928))

Abstract

Boswellic acids, which are pentacyclic triterpenes belong to the active pharmacological compounds of the oleogum resin of different Boswellia species. In the resin, more than 12 different boswellic acids have been identified but only KBA and AKBA received significant pharmacological interest. Biological Activity: In an extract of the resin of Boswellia species multiple factors are responsible for the final outcome of a therapeutic effect, be it synergistic or antagonistic. Moreover, the anti-inflammatory actions of BAs are caused by different mechanisms of action. They include inhibition of leukotriene synthesis and to a less extend prostaglandin synthesis. Furthermore inhibition of the complement system at the level of conversion of C3 into C3a and C3b. A major target of BAs is the immune system. Here, BEs as well as BAs including KBA and AKBA, have been shown to decrease production of proinflammatory cytokines including IL-1, IL-2, IL-6, IFN-γ and TNF-α which finally are directed to destroy tissues such as cartilage, insulin producing cells, bronchial, intestinal and other tissues. NFĸB is considered to be the target of AKBA. The complex actions of BEs and BAs in inflamed areas may be completed by some effects that are localized behind the inflammatory process as such tissue destruction. In this case, in vitro- and animal studies have shown that BAs and BEs suppress proteolytic activity of cathepsin G, human leucocyte elastase, formation of oxygen radicals and lysosomal enzymes. Pharmacokinetics: Whereas KBA is absorbed reaching blood levels being close to in vitro IC50, AKBA which is more active in in vitro studies than KBA, but undergoes much less absorption than KBA. However, absorption of both is increased more than twice when taken together with a high-fat meal.Clinical Studies There are a variety of chronic inflammatory diseases which respond to treatment with extracts from the resin of Boswellia species. Though, the number of cases is small in related clinical studies, their results are convincing and supported by the preclinical data. These studies include rheumatoid arthritis, osteoarthritis, chronic colitis, ulcerative colitis, collagenous colitis, Crohn’s disease and bronchial asthma. It can not be expected that there is cure from these diseases but at least improvement of symptoms in about 60–70 % of the cases. Side Effects The number and severity of side effects is extremely low. The most reported complaints are gastrointestinal symptoms. Allergic reactions are rare. And most authors report, that treatment with BEs is well tolerated and the registered side effects in BE- and placebo groups are similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Arachidonic Acid

ABA:

Acetyl-boswellic acid

Ac-OH-LA:

3α-Acetoxy-28-hydroxylup-20 (29)

AKBA:

Acetyl-11-keto-β-Boswellic acid

α-BA:

α-Boswellic acid

β-BA:

β-Boswellic acid

BA:

Boswellic acid

BE:

Boswellic extract

BS:

Boswellia serrata

BSA:

Bovine serum albumin

CD4:

CD4 lymphocytes

CD8:

CD8 lymphocytes

CIA:

Collagen-induced arthritis

COX:

Cyclooxygenase

CRP:

C-reactive protein

CDAI:

Crohn’s Disease Activity Index

ConA:

Concavalin A

ESR:

Erythrocyte Sedimentation Rate

FCV:

Forced vital capacity

FEV1 :

Forced expiratory volume

GSH:

Reduced glutathione

Hb:

Hemoglobin

HETE:

Hydroxyeicosatetraenoic acid

12-HHT:

12-Hydroxyheptadecatrienoic acid

HLE:

Human Leucozyte Elastase

IA2-A:

Tyrosinephosphatase antibody

IFN-γ:

Interferon-γ

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

IL:

Interleukin

IMG:

Immune globulin

KBA:

11-Keto-β-Boswellic acid

LA:

Lupenoic acid

LADA:

Late onset autoimmune diabetes of the adult

5-LO:

5-Lipoxigenase

12-LO:

12-Lipoxigenase

LPO:

Lipid peroxidase

LPS:

Lipopolysaccharide

LTB4 :

Leukotriene B

LTC4 :

Leukotriene C4

LTD4 :

Leukotriene D4

LTE4 :

Leukotriene E4

MIC:

Minimal inhibitory concentration

f-MLP:

n-formylmethionyl-leucyl-phenylalanine

MLD-STZ:

Multiple low-dose streptozotocin

NADPH:

Nicotinamide adenine dinucleotide phosphate hydrate

NFκB:

Nuclear transcription factor κB

NK cells:

Natural killer cells

NO:

Nitrogen monoxide

NSAID:

Nonsteroidal anti-inflammatory drugs

OA:

Osteoarthritis

PEFR:

Peak expiratory flow rate

PGE2 :

Prostaglandin E2

PBMC:

Peripheral blood mononuclear cells

PEFR:

Peak expiratory flow rate

PGE1 :

Prostaglandin E1

PHA:

Phytohemagglutinin

PMA:

Phorbol 12-myristate 13-acetate

PMN:

Polymorph mononuclear neutrophil leucocyte

RA:

Rheumatoid arthritis

SG:

Salai guggal

SOD:

Superoxid dismutase

STZ:

Streptozotocin

TA:

Tirucallic acid

Th1 :

Th1 lymphocytes

Th2 :

Th2 lymphocytes

TNF-α:

Tumor necrosis factor alpha

t1/2:

Half-life

References

  1. Acebo E, Raton JA, Saulua S, Eizaguirre X, Trébol J, Perez JLD (2004) Allergic contact dermatitis from Boswellia serrata extract in a naturopathic cream. Contact Dermat 51:91

    Article  Google Scholar 

  2. Adelakun EA, Finbar EA, Agina SE, Makinde AA (2001) Antimicrobial activity of Boswellia dalzielii stern bark. Fitoterapia 72:822–824

    Article  CAS  PubMed  Google Scholar 

  3. Ammon HP, Mack T, Singh GB, Safayhi H (1991) Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudates of Boswellia serrata. Planta Med 57:203–207

    Article  CAS  PubMed  Google Scholar 

  4. Badria FA, Mikhaeil BR, Maatooq GT, Amer MM (2003) Immunmodulatory terpenoids from the oleogum resin of Boswellia carterii Bordwood. Z Naturforsch 58:506–516

    Google Scholar 

  5. Beisner K, Büchele B, Werz U, Simmet T (2003) Structural analysis of 3-α-acetyl-20(29)-lupene-24-oic acid, a novel pentacyclic triterpene isolated from the gum resin of Boswellia serrata, by NMR spectroscopy. Magn Reson Chem 41:629–632

    Article  Google Scholar 

  6. Blain EJ, Ali AY, Duance VC (2010) Boswellia frereana (frankincense) suppresses cytokine-induced matrix metalloproteinase expression and production of proinflammatory molecules in articular cartilage. Phytother Res 24:905–912

    PubMed  Google Scholar 

  7. Böker DK, Winking M (1997) Die Rolle von Boswellia-Säuren in der Therapie maligner Gliome. Dtsch Ärztebl 94:B-958–B-960

    Google Scholar 

  8. Büchele B, Simmet T (2003) Analysis of 12 different pentacyclic triterpenic acids from frankincense in human plasma by high performance liquid chromatography and photodiode array detection. J Chromatogr B 795:355–362

    Article  Google Scholar 

  9. Büchele B, Zugmaier W, Simmet T (2003) Analysis of pentacyclic triterpenic acids from frankincense gum resins and related phytopharmaceuticals by high-performance liquid chromatography. Identification of lupeolic acid, a novel pentacyclic triterpene. J Chromatogr B 791:21–30

    Article  Google Scholar 

  10. Buvari PG (2001) Wirksamkeit und Unbedenklichkeit der H15 Ayurmedica-Therapie bei chronisch entzündlichen Erkrankungen. Dissertation, University of Mannheim-Heidelberg

    Google Scholar 

  11. Camardes L, Dayton T, Di Stefano V, Pitonzo R, Schillaci D (2007) Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae). Ann Chim 97:837–844

    Google Scholar 

  12. Cao H, Yu R, Choi Y, Ma ZZ, Zhang H, Xiang W, Lee DY et al (2010) Discovery of cyclooxygenase inhibitors from medicinal plants used to treat inflammation. Pharmacol Res 61:519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chervier MR, Ryan AE, Lee DY, Zhongze M, Wu-Yan Z, Via CS (2005) Boswellia carterii extract inhibits TH1 cytokines and promotes TH2 cytokines in vitro. Clin Diagn Lab Immunol 1:575–580

    Google Scholar 

  14. Chanarin N, Johnston SL (1994) Leukotrienes as a target in asthma therapy. Drugs 47:12–24

    Article  CAS  PubMed  Google Scholar 

  15. Cnop M, Welsh N, Jonas JC et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl. 2):97–107

    Article  Google Scholar 

  16. Cuaz-Pérolin C, Billiel L, Baugé E, Copin C, Scott-Algaria D, Genze F, Rouis M et al (2008) Antiinflammatory and antiatherogenic effects of NF-Kappa B inhibitor acetyl-11-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arterioscler Thromb Vasc Biol 28:272–277

    Article  PubMed  Google Scholar 

  17. Etzel R (1996) Special extract of Boswellia serrata (H15) in the treatment of rheumatoid arthritis. Phytomedicine 3:91–94

    Article  CAS  PubMed  Google Scholar 

  18. Fan AY, Lao L, Zhang RX, Wang LB, Lee DY, Ma ZZ et al (2005) Effects of an acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on rats with persistent inflammation. J Altern Complement Med 11:323–331

    Article  PubMed  Google Scholar 

  19. Gayathri B, Manjula N, Vinaykumar KS, Lakshmi BS, Balakrishnan A (2007) Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibiton of TNF alpha, IL-1beta, NO and MAP kinases. Int Immunopharmacol 7:472–482

    Article  Google Scholar 

  20. Gerhardt H, Seifert F, Buvari P, Vogelsang H, Repges RZ (2001) Therapie des aktiven Morbus Crohn mit Boswellia serrata Extract H 15. Z Gastroenterol 39:11–17

    Article  CAS  PubMed  Google Scholar 

  21. Gupta OP, Sharma N, Chand DA (1992) Sensitive and relevant model for evaluating anti-inflammatory activity-papaya latex-induced rat paw inflammation. J Pharmacol Toxicol Methods 28:15–19

    Google Scholar 

  22. Gupta J, Gupta S (1993) Parihar A. S-compound-A traditional drug for osteoarthritis patients. The Indian Practitioner 46:69–72

    Google Scholar 

  23. Gupta I, Parihar A, Malhotra P, Singh GB, Lüdtke R, Safayhi H, Ammon HP (1997) Effects of Boswellia serrata gum resin in patients with ulcerative colitis. Eur J Med Res 2:37–43

    CAS  PubMed  Google Scholar 

  24. Gupta I, Gupta V, Parihar A, Gupta S, Lüdtke R, Safayhi H, Ammon HP (1998) Effects of Boswellia serrata gum resin in patients with bronchial asthma: results of a double-blind, placebo-controlled, 6-week clinical study. Eur J Med Res 3:511–514

    CAS  PubMed  Google Scholar 

  25. Gupta I, Parihar A, Malhorta P, Gupta S, Ludtke R, Safayhi H et al (2001) Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med 67:391–395

    Article  CAS  PubMed  Google Scholar 

  26. Gupta A, Khajuria A, Singh J, Singh S, Suri KA, Qazi GN (2011) Immunological adjuvant effect of Boswellia serrata (BOS 2000) on specific antibody and cellular response to ovalbumin in mice. Int Immunopharmacol 11:968–975

    Article  CAS  PubMed  Google Scholar 

  27. Heil K, Ammon HP, Safayhi H (2001) Inhibiton of NADPH-oxidase by AKBA in intact PMNs. Naunyn Schmiedebergs Arch Pharmacol 3635:R14

    Google Scholar 

  28. Holtmeier WH, Zeuzem S, Preiß J, Kruis W, Böhm S, Maaser Ch et al (2010) Randomized, placebo-controlled, double-blind trial of Boswellia serrata in maintaining remission of Crohn’s Disease: good safety profile but lack of efficacy. Inflamm Bowel Dis 17(2):573–582

    Article  Google Scholar 

  29. Hussein G, Miyashiro H, Nakamura N, Hattori M, Kakiuchi N, Shimotohno K (2000) Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother Res 14:510–516

    Article  CAS  PubMed  Google Scholar 

  30. Kapil A, Moza N (1991) Anticomplementary activity of Boswellia acids—an inhibitor of C3-convertase of the classical complement pathway. Int J Immunopharmacol 14:1139–1143

    Article  Google Scholar 

  31. Karr A, Menon MK (1969) Analgesic effect of the gum resin of Boswellia serrata Roxb. Life Sci 8:1023–1028

    Article  Google Scholar 

  32. Kela SL, Ogunsusi RA, Ogbogu VC, Nwude N (1989) Screening of some Nigeria plants for molluscicidal activity. Rev Elev Med Vet Pays Trop 42:195–202

    CAS  PubMed  Google Scholar 

  33. Khajuria A, Gupta A, Suden P, Singh S, Malik F, Singh J et al (2008) Immunmodulatory activity of biopolymeric fraction BOS 2000 from Boswellia serrata. Phytother Res 22:340–348

    Article  CAS  PubMed  Google Scholar 

  34. Kimmatkar N, Thawani V, Hingorani L, Khiyani R (2003) Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee—a randomized double blind placebo controlled trial. Phytomedicine 10:3–7

    Article  CAS  PubMed  Google Scholar 

  35. Kirsten S, Treier M, Wehrle SJ, Becker G, Abdel-Tawab M, Gerbeth K et al (2011) Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors. Cancer 117:3788–3795

    Google Scholar 

  36. Krüger P, Daneshfar R, Eckert GP, Klein J, Volmer DA et al (2008) Metabolism of boswellic acids in vitro and in vivo. Drug Metabol Distpos 36:1135–1142

    Article  Google Scholar 

  37. Krüger P, Kanzer J, Hummel J, Fricker G, Schubert-Zsilavecz M, Abdel-Tawab M (2009) Permeation of Boswellia extract in the Caco-2 model and possible interactions of its constituents KBA and AKBA with OATP1B3 and MRP2. Eur J Pharm Sci 36:275–284

    Article  PubMed  Google Scholar 

  38. Madisch A, Miehlke S, Eichele O, Bethke B, Mrwa J, Kuhlisch E et al (2005) Boswellia serrata Extrakt bei kollagener Kolitis – eine randomisierte, placebo-kontrollierte, doppelblinde Multicenterstudie. Dtsch Ges Verdau Stoffw Erkr. Gastroenterol 43(Suppl. Z):P061

    Google Scholar 

  39. Martelli L, Berardesca E, Martelli M (2000) Topical formulation of a new plant extract complex with refirming properties. Clinical and non-invasive evaluation in a double-blind trial. Int J Cosmet Sci 22:201–206

    Google Scholar 

  40. Martinez D, Lohs K, Janzen J (1989) Weihrauch und Myrrhe. Kulturgeschichte und wirtschaftliche Bedeutung. Botanik, Chemie, Medizin. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  41. Mikhaeil BR, Maatooq GT, Badria FA, Amer MM (2003) Chemistry and immunomodulatory activity of frankincense oil. Z Naturforsch C 58:230–238

    Article  CAS  PubMed  Google Scholar 

  42. Mothana RA, Lindequist U (2005) Antimicrobial activity of some medicinal plants of the island Sogotra. J Ethnopharmacol 96:177–181

    Article  PubMed  Google Scholar 

  43. Mothana RA, Mentel R, Reiss C, Lindequist U (2006) Phytochemical screening and antiviral activity of some medicinal plants from the island Sogotra. Phytother Res 20:298–302

    Article  PubMed  Google Scholar 

  44. Mothana RA (2011) Anti-inflammatory, antinociceptive and antioxidant activities of the endemic Sogotraen Boswellia elongata Balf. F. and Jatropha unicostata Balf. F. in different experimental models. Food Chem Toxicol 49:2594–2599

    Article  CAS  PubMed  Google Scholar 

  45. Moussaieff A, Shohami E, Kashman Y, Fride E, Schmitz ML, Renner F et al (2007) Incensolate acetate, a novel anti-inflammatory compound isolated from Boswellia resin, inhibits nuclear factor-kappa B activation. Mol Pharmacol 72:1657–1664

    Article  CAS  PubMed  Google Scholar 

  46. O’Connor TM, Cusack R, Lauders S, Bredin CP (2014) Holy Saturday asthma. BMJ Case Rep doi:10.1136/bcr-2014-203861

    Google Scholar 

  47. Poeckel D, Tausch L, Kather N, Jauch J, Werz O (2006) Boswellic acids stimulate arachidonic acid release and 12-lipoxygenase activity in human platelets independent of Ca2+ and differentially interact with platelet-type 12-lipoxygenase. Mol Pharmacol 70:1071–1078

    Article  CAS  PubMed  Google Scholar 

  48. Raja AF, Ali F, Khan IA, Shawl AS, Arora DS (2011) Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens. BMC Res Notes 4:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reddy KP, Singh AB, Puri A, Srivastava K, Narender T (2009) Synthesis of novel triterpenoid (lupeol) derivatives and their in vivo antihyperglycemic and antidyslipidemic activity. Bioorg Med Chem Lett 19:4463–4466

    Google Scholar 

  50. Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subramanian LR, Ammon HP (1992) Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261:1143–1146

    CAS  PubMed  Google Scholar 

  51. Safayhi H, Sailer ER, Ammon HP (1995) Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid. Mol Pharmacol 47:1212–1216

    CAS  PubMed  Google Scholar 

  52. Safayhi H, Rall B, Sailer ER, Ammon HP (1997) Inhibition by Boswellic acids of human leukocyte elastase. J Pharmacol Exp Ther 281:460–463

    CAS  PubMed  Google Scholar 

  53. Sailer ER, Subramanian LR, Rall B, Hoernlein RF, Ammon HP, Safayhi H (1996) Acetyl-11-keto-beta-boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity. Br J Pharmacol 117:615–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sailer ER, Schweizer S, Boden SE, Ammon HP, Safayhi H (1998) Characterization of an acetyl-11-keto-beta-boswellic acid and arachidonate-binding regulatory site of 5-lipoxygenase using photoaffinity labeling. Eur J Biochem 256:364–368

    Article  CAS  PubMed  Google Scholar 

  55. Sander O, Herborn G, Rau R (1998) Is H15 (extract of Boswellia serrata “incense”) an efficient supplementation to established drug therapy of rheumatoid arthritis? Results of a double-blind pilot trial. Z Rheumatol 57:11–16

    Article  CAS  PubMed  Google Scholar 

  56. Schillaci D, Arizza V, Dayton T, Camarda L, Di SV (2008) In vitro anti-biofilm activity of Boswellia spp. Oleogum resin essential oils. Lett Appl Microbiol 47:433–438

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt TJ, Kaiser M, Brun R (2011) Complete structural assignment of serratol, a cembrane-type diterpene from Boswellia serrata and evaluation of its antiprotozoal activity. Planta Med 77:849–850

    Article  CAS  PubMed  Google Scholar 

  58. Schrott E, Laufer S, Lämmerhofer M, Ammon HPT (2014) Extract from gum resin of Boswellia serrata decreases IA2-antibody in a patient with “Late onset Autoimmune Diabetes of the Adult” (LADA). Phytomedicine 21:786

    Article  CAS  PubMed  Google Scholar 

  59. Sengupta K, Alluri KV, Satish AR, Mishra S, Golakoti T, Sarma KV et al (2008) A double blind, randomised, placebo controlled study of the efficacy and safety of 5-Loxin for treatment of osteoarthritis of the knee. Arthritis Res Ther 10:R85

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sengupta K, Krishnaraju AV, Vishal AA, Mishra A, Trimurtulu G, Sarma KV et al (2010) Comperative efficacy and tolerability of 5-Loxin and Aflapin. Against osteoarthritis of the knee: a double blind, randomized, placebo controlled clinical study. Int J Med Sci 7:366–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharma ML, Bani S, Singh CB (1989) Antiarthritic activity of boswellic acids in bovine serum albumin (BSA)-induced arthritis. Int J Immunopharmacol 11:647-652

    Google Scholar 

  62. Sharma ML, Kaul A, Khajuria A, Singh S, Singh GB (1996) Immunomodulatory activity of boswellic acids (pentacyclic triterpene acids) from Boswellia serrata. Phytother Res 10:107–112

    Article  CAS  Google Scholar 

  63. Sharma S, Thawani V, Hingorani L, Shrivastava M, Bhate VR, Khiyani R (2004) Pharmacokinetic study of 11-keto-beta-boswellic acid. Phytomedicine 11:255–260

    Article  CAS  PubMed  Google Scholar 

  64. Shehata AM, Quintanilla-Fend L, Bettio S, Singh CB, Ammon HP (2011) Prevention of multiple low-dose streptozotocin (MLD-STZ) diabetes in mice by an extract from gum resin of Boswellia serrata (BE). Phytomedicine 18:1037–1044

    Article  CAS  PubMed  Google Scholar 

  65. Shehata AM, Quintanilla-Fend L, Bettio S, Jauch J, Scior T, Scherbaum WA, Ammon HPT (2015) 11-Keto-β-Boswellic acids prevent development of autoimmune reactions, insulitis and reduce hyperglycemia during induction of multiple low dose streptozotocin (MLD-STZ) diabetes in mice. Horm Metab Res 47:463–469

    Article  CAS  PubMed  Google Scholar 

  66. Siemoneit U, Hofmann B, Kather N, Lamkemeyer T, Madlung J, Franke L et al (2008) Identification and functional analysis of cyclooxygenase-1 as a molecular target of Boswellic acids. Biochem Pharmacol 75:503–513

    Article  CAS  PubMed  Google Scholar 

  67. Siemoneit U, Pergola C, Jazzar B, Northoff H, Skarke C, Jauch J, Werz O (2009) On the interference of Boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance. Eur J Pharmacol 606:246–254

    Article  CAS  PubMed  Google Scholar 

  68. Siemoneit U, Koeberle A, Rossi A, Dehm F, Verhoff M, Reckel S et al (2011) Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of Boswellic acids from frankincense. Br J Pharmacol 162:147–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh GB, Atal CH (1986) Pharmacology of an extract of salai guggal ex Boswellia serrata, a new non-steroidal anti-inflammatory agent. Agents Actions 18:407–412

    Article  CAS  PubMed  Google Scholar 

  70. Singh GB, Singh S, Bani S (1996) Alcoholic extract of salai-guggal ex Boswellia serrata, a new natural source NSAID. Drugs Today 32:109–112

    Article  CAS  Google Scholar 

  71. Singh S, Khajuria A, Taneja SC, Khajuria RK, Singh J, Johri RK, Qazi GN (2008) Boswellic acids: a leukotriene inhibitor also effective through topical application in inflammatory disorders. Phytomedicine 15:400–407

    Article  CAS  PubMed  Google Scholar 

  72. Sontakke S, Thawani V, Pimpalkhute S, Kabra P, Bubhulkar S, Hingorani L (2007) Open, randomized controlled clinical trial of Boswellia serrata extract as compared to valdecocib in osteoarthritis of knee. Indian J Pharmacol 39:27–29

    Article  Google Scholar 

  73. Stange EF, Schreiber S, Raedler A et al (1997) Therapie des Morbus Crohn. Z Gastroenterol 35:541–554

    CAS  PubMed  Google Scholar 

  74. Sterk V, Büchele B, Simmet T (2004) Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med 70:1155–1160

    Article  CAS  PubMed  Google Scholar 

  75. Streffer JR, Bitzer M, Schabet M, Dichganz J, Weller M (2001) Response of radiochemotherapy-associated cerebral edema a phytotherapeutic agent, H15. Neurology 56:1219–1221

    Article  CAS  PubMed  Google Scholar 

  76. Syrovets T, Büchele B, Krauss C, Laumonnier Y, Simmet T (2005) Acetylboswellic acids inhibit lipopolysaccharide-mediated TNF-alpha induction in monocytes by direct interaction with IkappaB kinase. J Immunol 174:498–506

    Article  CAS  PubMed  Google Scholar 

  77. Takada Y, Ichikawa H, Badmaev V, Aggarwal BB (2006) Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol 176:3127–3140

    Article  CAS  PubMed  Google Scholar 

  78. Tausch L, Henkel A, Siemoneit U, Poeckel D, Kather N, Franke L et al (2009) Identification of human cathepsin G as a functional target of boswellic acids from the anti-inflammatory remedy frankincense. J Immunol 183:3433–3442

    Article  CAS  PubMed  Google Scholar 

  79. Umar S, Umar K, Saarwar AH, Khan A, Ahmad N (2014) Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine 21:847–856

    Article  CAS  PubMed  Google Scholar 

  80. Verhoff M, Seitz S, Northoff H, Jauch J, Schaible AM, Werz O (2012) A novel C(28)-hydroxylated lupeolic acid suppresses the biosynthesis of eicosanoids through inhibition of cytosolic phospholipase A(2). Biochem Pharmacol 84:681–691

    Article  CAS  PubMed  Google Scholar 

  81. Wagner H, Knaus W, Jordan E (1987) Pflanzeninhaltsstoffe mit Wirkung auf das Komplementsystem. Z Phytother 8:148–149

    Google Scholar 

  82. Wang H, Syrovets T, Kess D, Büchele B, Hainzl H, Lunov O et al (2009) Targeting NF-kappa B with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis. J Immunol 1:4755–4763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. T. Ammon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ammon, H.P.T. (2016). Boswellic Acids and Their Role in Chronic Inflammatory Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-41334-1_13

Download citation

Publish with us

Policies and ethics