Skip to main content

Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs

  • Chapter
  • First Online:
Anti-inflammatory Nutraceuticals and Chronic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 928))

Abstract

Honokiol (C18H18O2) is a biphenolic natural product isolated from the bark and leaves of Magnolia plant spp. During the last decade or more, honokiol has been extensively studied for its beneficial effect against several diseases. Investigations have demonstrated that honokiol possesses anti-carcinogenic, anti-inflammatory, anti-oxidative, anti-angiogenic as well as inhibitory effect on malignant transformation of papillomas to carcinomas in vitro and in vivo animal models without any appreciable toxicity. Honokiol affects multiple signaling pathways, molecular and cellular targets including nuclear factor-κB (NF-κB), STAT3, epidermal growth factor receptor (EGFR), cell survival signaling, cell cycle, cyclooxygenase and other inflammatory mediators, etc. Its chemopreventive and/or therapeutic effects have been tested against chronic diseases, such as cancers of different organs. In this chapter, we describe and discuss briefly the effect of honokiol against cancers of different organs, such as melanoma, non-melanoma, lung, prostate, breast, head and neck squamous cell carcinoma, urinary bladder cancer, gastric cancer, and neuroblastoma, etc. and describe its mechanism of action including various molecular and cellular targets. Although more rigorous in vivo studies are still needed, however it is expected that therapeutic effects and activities of honokiol may help in the development and designing of clinical trials against chronic diseases in human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCC:

Basal cell carcinomas

CDK:

Cyclin dependent kinases

CHS:

Contact hypersensitivity

COX-2:

Cyclooxygenase-2

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

HNSCC:

Head and neck squamous cell carcinoma

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

MMP:

Matrix metalloproteinase

NF-κB:

Nuclear factor-kappa B

NSCLC:

Non-small cell lung cancer

PCNA:

Proliferating cell nuclear antigen

PG:

Prostaglandin

PGE2 :

Prostaglandin E2

SCC:

Squamous cell carcinomas

TNF-α:

Tumor necrosis factor-alpha

UVR:

Ultraviolet radiation

References

  1. Li TSC (2002) Chinese and related North American herbs: Phytopharmacology and therapeutic values. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  2. Hahm ER, Arlotti JA, Marynowski SW, Singh SV (2008) Honokiol, a constituent of oriental medicinal herb magnolia officinalis, inhibits growth of PC-3 xenografts in vivo in association with apoptosis induction. Clin Cancer Res 14:1248–1257

    Article  CAS  PubMed  Google Scholar 

  3. Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Der CJ, Battle T, Frank DA, Ye K, Muradm E, Dubiel W, Soff G, Arbiser JL (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278:35501–35507

    Article  CAS  PubMed  Google Scholar 

  4. Munroe ME, Arbiser JL, Bishop GA (2007) Honokiol, a natural plant product, inhibits inflammatory signals and alleviates inflammatory arthritis. J Immunol 179:753–763

    Article  CAS  PubMed  Google Scholar 

  5. Pyo MK, Lee Y, Yun-Choi HS (2002) Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch Pharm Res 25:325–328

    Article  CAS  PubMed  Google Scholar 

  6. Clark AM, El-Feraly FS, Li WS (1981) Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J Pharm Sci 70:951–952

    Article  CAS  PubMed  Google Scholar 

  7. Park J, Lee J, Jung E, Park Y, Kim K, Park B, Jung K, Park E, Kim J, Park D (2004) In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium spp. Eur J Pharmacol 496:189–195

    Article  CAS  PubMed  Google Scholar 

  8. Vaid M, Sharma SD, Katiyar SK (2010) Honokiol, a phytochemical from the Magnolia plant, inhibits photocarcinogenesis by targeting UVB-induced inflammatory mediators and cell cycle regulators: development of topical formulation. Carcinogenesis 11:2004–2011

    Article  Google Scholar 

  9. Mukhtar H, Elmets CA (1996) Photocarcinogenesis: mechanisms, models and human health implications. Photochem Photobiol 63:355–447

    Article  Google Scholar 

  10. Katiyar SK (2006) Oxidative stress and photocarcinogenesis: strategies for prevention. In: Singh KK (ed) Oxidative stress, disease and cancer. Imperial College Press, London, pp 933–964

    Chapter  Google Scholar 

  11. Katiyar SK, Matsui MS, Mukhtar H (2000) Kinetics of UV light- induced cyclobutane pyrimidine dimers in human skin in vivo: an immunohistochemical analysis of both epidermis and dermis. Photochem Photobiol 72:788–793

    Article  CAS  PubMed  Google Scholar 

  12. Meeran SM, Akhtar S, Katiyar SK (2009) Inhibition of UVB-induced skin tumor development by drinking green tea polyphenols is mediated through DNA repair and subsequent inhibition of inflammation. J Invest Dermatol 129:1258–1270

    Article  CAS  PubMed  Google Scholar 

  13. Rivas JM, Ullrich SE (1994) The role of IL-4, IL-10, and TNF-alpha in the immune suppression induced by ultraviolet radiation. J Leukoc Biol 56:769–775

    CAS  PubMed  Google Scholar 

  14. Hart PH, Townley SL, Grimbaldeston MA, Khalil Z, Finlay-Jones JJ (2002) Mast cells, neuropeptides, histamine, and prostaglandins in UV-induced systemic immunosuppression. Methods 28:79–89

    Article  CAS  PubMed  Google Scholar 

  15. Chung HT, Burnham DK, Robertson B, Roberts LK, Daynes RA (1986) Involvement of prostaglandins in the immune alterations caused by the exposure of mice to ultraviolet radiation. J Immunol 137:2478–2484

    CAS  PubMed  Google Scholar 

  16. Prasad R, Katiyar SK (2013) Prostaglandin E2 promotes ultraviolet radiation induced immune suppression through DNA hypermethylation. Neoplasia 15:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beissert S, Granstein RD (1996) UV-induced cutaneous photobiology. Crit Rev Biochem Mol Biol 31:381–404

    Article  CAS  PubMed  Google Scholar 

  18. Fischer SM (2002) Is cyclooxygenase-2 important in skin carcinogenesis? J Environ Pathol Toxicol Oncol 21:183–191

    Article  CAS  PubMed  Google Scholar 

  19. Karia PS, Han J, Schmults CD (2012) Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States. J Am Acad Dermatol 68:957–966

    Article  Google Scholar 

  20. Christenson LJ, Borrowman TA, Vachon CM, Tollefson MM, Otley CC, Weaver AL, Roenigk RK (2005) Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA 294:681–690

    Article  CAS  PubMed  Google Scholar 

  21. Chilampalli S, Zhang X, Fahmy H, Kaushik RS, Zeman D, Hildreth MB, Dwivedi C (2010) Chemopreventive effects of honokiol on UVB-induced skin cancer development. Anticancer Res 30:777–783

    CAS  PubMed  Google Scholar 

  22. Meeran SM, Katiyar SK (2008) Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 13:2191–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Graña X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11:211–219

    PubMed  Google Scholar 

  24. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  25. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  26. Fotedar R, Bendjennat M, Fotedar A (2004) Role of p21WAF1 in the cellular response to UV. Cell Cycle 3:134–137

    Article  CAS  PubMed  Google Scholar 

  27. Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262

    Article  CAS  PubMed  Google Scholar 

  28. Nomura M, Kaji A, Ma WY, Zhong S, Liu G, Bowden GT, Miyamoto KI, Dong Z (2001) Mitogen- and stress-activated protein kinase 1 mediates activation of Akt by ultraviolet B irradiation. J Biol Chem 276:25558–25567

    Article  CAS  PubMed  Google Scholar 

  29. Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267

    Article  CAS  PubMed  Google Scholar 

  30. Tyrrell RM (1996) Activation of mammalian gene expression by the UV component of sunlight-from models to reality. BioEssays 18:139–148

    Article  CAS  PubMed  Google Scholar 

  31. Osaki M, Kase S, Adachi K, Takeda A, Hashimoto K, Ito H (2004) Inhibition of the PI3K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45. J Cancer Res Clin Oncol 130:8–14

    Article  CAS  PubMed  Google Scholar 

  32. Saleem M, Afaq F, Adhami VM, Mukhtar H (2004) Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 23:5203–5214

    Article  CAS  PubMed  Google Scholar 

  33. Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8:153–158

    Article  CAS  PubMed  Google Scholar 

  34. Callejas NA, Casado M, Bosca L, Martin-Sanz P (1999) Requirement of nuclear factor kappaB for the constitutive expression of nitric oxide synthase-2 and cyclooxygenase-2 in rat trophoblasts. J Cell Sci 18:3147–3155

    Google Scholar 

  35. American Cancer Society. Cancer facts and figures. http://www.cancer.org/research/cancerfactsfigures/. Accessed July 2014

  36. Lewis EM, Sergeant S, Ledford B, Stull N, Dinauer MC, McPhail LC (2010) Phosphorylation of p22phox on threonine 147 enhances NADPH oxidase activity by promoting p47phox binding. J Biol Chem 285:2959–2967

    Article  CAS  PubMed  Google Scholar 

  37. Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A, Silliman CC (2005) Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 78:1025–1042

    Article  CAS  PubMed  Google Scholar 

  38. Prasad R, Kappes JC, Katiyar SK (2016) Inhibition of NADPH oxidase 1 activity and blocking the binding of cytosolic and membrane-bound proteins by honokiol inhibit migratory potential of melanoma cells. Oncotarget 7:7899–7912

    Google Scholar 

  39. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP (2004) Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279:45935–45941

    Article  CAS  PubMed  Google Scholar 

  40. Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, Fukumaki Y, Nakamura M, Takeshige K (1996) Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem 271:22152–22158

    Article  CAS  PubMed  Google Scholar 

  41. Hoehner JC, Gestblom C, Hedborg F, Sandstedt B, Olsen L, Pahlman S (1996) A developmental model of neuroblastoma: differentiating stroma-poor tumors’ progress along an extra-adrenal chromaffin lineage. Lab Invest 75:659–675

    CAS  PubMed  Google Scholar 

  42. Park JR, Eggert A, Caron H (2008) Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 55:97–120

    Article  PubMed  Google Scholar 

  43. Zage PE, Kletzel M, Murray K, Marcus R, Castleberry R, Zhang Y, London WB, Kretschmar C, Children’s Oncology Group (2008) Outcomes of the POG 9340/9341/9342 trials for children with high-risk neuroblastoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 51:747–753

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lin JW, Chen JT, Hong CY, Lin YL, Wang KT, Yao CJ, Lai GM, Chen RM (2012) Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic Bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro Oncol 14:302–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yeh PS, Wang W, Chang YA, Lin CJ, Wang JJ, Chen RM (2016) Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Lett 370:66–77

    Article  CAS  PubMed  Google Scholar 

  46. Lv X, Liu F, Shang Y, Chen SZ (2015) Honokiol exhibits enhanced antitumor effects with chloroquine by inducing cell death and inhibiting autophagy in human non-small cell lung cancer cells. Oncol Rep 34:1289–1300

    PubMed  Google Scholar 

  47. Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, Jensen RA, Anant S, Mammen JM (2014) Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog 54:1710–1721

    Article  PubMed  Google Scholar 

  48. Hahm ER, Sakao K, Singh SV (2014) Honokiol activates reactive oxygen species mediated cytoprotective autophagy in human prostate cancer cells. Prostate 74:1209–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo YB, Bao XJ, Xu SB, Zhang XD, Liu HY (2015) Honokiol induces cell cycle arrest and apoptosis via p53 activation in H4 human neuroglioma cells. Int J Clin Exp Med 15:7168–7175

    Google Scholar 

  50. Kim KC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hunter KD, Parkinson EK, Harrison PR (2005) Profiling early head and neck cancer. Nat Rev Cancer 5:127–135

    Article  CAS  PubMed  Google Scholar 

  52. Casiglia J, Woo SB (2001) A comprehensive review of oral cancer. Gen Dent 49:72–82

    CAS  PubMed  Google Scholar 

  53. Grandis JR, Melhem MF, Barnes EL, Tweardy DJ (1996) Quantitative immunohistochemical analysis of transforming growth factor-α and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 78:1284–1292

    Article  CAS  Google Scholar 

  54. He Y, Zeng Q, Drenning SD, Melhem MF, Tweardy DJ, Huang L, Grandis JR (1998) Inhibition of human squamous cell carcinoma growth in vivo by epidermal growth factor receptor antisense RNA transcribed from the U6 promoter. J Natl Cancer Inst 90:1080–1087

    Article  CAS  PubMed  Google Scholar 

  55. Grandis JR, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, Drenning SD, Tweardy DJ (1998) Levels of TGF-α and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90:824–832

    Article  Google Scholar 

  56. Singh T, Gupta NA, Xu S, Prasad R, Velu SE, Katiyar SK (2015) Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor receptor. Oncotarget 6:21268–21282

    Article  PubMed  PubMed Central  Google Scholar 

  57. Crowell JA, Steele VE, Sigman CC, Fay JR (2003) Is inducible nitric oxide synthase a target for chemoprevention? Mol Cancer Ther 2:815–823

    CAS  PubMed  Google Scholar 

  58. Choi BD, Jeong SJ, Wang G, Park JJ, Lim DS, Kim BH, Cho YI, Kim CS, Jeong MJ (2011) Secretory leukocyte protease inhibitor is associated with MMP-2 and MMP-9 to promote migration and invasion in SNU638 gastric cancer cells. Int J Mol Med 28:527–534

    CAS  PubMed  Google Scholar 

  59. Cho JH, Jeon YJ, Park SM, Shin JC, Lee TH, Jung S, Park H, Ryu J, Chen H, Dong Z, Shim JH, Chae JI (2015) Multifunctional effects of honokiol as an anti-inflammatory and anticancer drug in human oral squamous cancer cells and xenograft. Biomaterials 53:274–284

    Article  CAS  PubMed  Google Scholar 

  60. Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98

    Article  CAS  PubMed  Google Scholar 

  61. Armstrong JS (2006) Mitochondrial membrane permeabilization: the sine qua non for cell death. BioEssays 28:253–260

    Article  CAS  PubMed  Google Scholar 

  62. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:e2888

    Article  PubMed  PubMed Central  Google Scholar 

  64. Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, Radisky DC, Ferrone S, Knutson KL (2009) Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res 69:2887–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Avtanski DB, Nagalingam A, Bonner MY, Arbiser JL, Saxena NK, Sharma D (2015) Honokiol activates LKB1-miR-34a axis and antagonizes the oncogenic actions of leptin in breast cancer. Oncotarget 6:29947–29962

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shen Z, Wen XF, Lan F, Shen ZZ, Shao ZM (2002) The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma. Clin Cancer Res 8:2085–2090

    CAS  PubMed  Google Scholar 

  67. Li J, Liu J, Li P, Mao X, Li W, Yang J, Liu P (2014) Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. J Exp Clin Cancer Res 33:70

    Article  PubMed  PubMed Central  Google Scholar 

  68. Roy BC, Kohno T, Iwakawa R, Moriguchi T, Kiyono T, Morishita K, Sanchez-Cespedes M, Akiyama T, Yokota J (2010) Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells. Lung Cancer 70:136–145

    Article  PubMed  Google Scholar 

  69. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199

    Article  CAS  PubMed  Google Scholar 

  70. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  71. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G (2014) Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, Chomienne C, Ishikawa F, Schuringa JJ, Stassi G, Huntly B, Herrmann H, Soulier J, Roesch A, Schuurhuis GJ, Wohrer S, Arock M, Zuber J, Cerny-Reiterer S, Johnsen HE, Andreeff M, Eaves C (2012) Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 12:767–775

    Article  CAS  PubMed  Google Scholar 

  74. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Sinha CK, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  CAS  PubMed  Google Scholar 

  75. Huqun Ishikawa R, Zhang J, Miyazawa H, Goto Y, Shimizu Y, Hagiwara K, Koyama N (2012) Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer. Cancer 118:1599–1606

    Article  CAS  PubMed  Google Scholar 

  76. Raman JD, Mongan NP, Tickoo SK, Boorjian SA, Scherr DS, Gudas LJ (2005) Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res 11:8570–8576

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Q, Zhao W, Ye C, Zhuang J, Chang C, Li Y, Huang X, Shen L, Li Y, Cui Y, Song J, Shen B, Eliaz I, Huang R, Ying H, Guo H, Yan J (2015) Honokiol inhibits bladder tumor growth by suppressing EZH2/miR-143 axis. Oncotarget 6:37335–37348

    PubMed  PubMed Central  Google Scholar 

  78. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 4:679–695

    Article  Google Scholar 

  79. Chang KH, Yan MD, Yao CJ, Lin PC, Lai GM (2013) Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells. Oncol Lett 6:1435–1438

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaushik G, Ramalingam S, Subramaniam D, Rangarajan P, Protti P, Rammamoorthy P, Anant S, Mammen JM (2012) Honokiol induces cytotoxic and cytostatic effects in malignant melanoma cancer cells. Am J Surg 204:868–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110

    Article  PubMed  Google Scholar 

  82. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Höfler H, Becker KF (2002) Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161:1881–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu WF, Ji SR, Sun JJ, Zhang Y, Liu ZY, Liang AB, Zeng HZ (2012) CD146 expression correlates with epithelial-mesenchymal transition markers and a poor prognosis in gastric cancer. Int J Mol Sci 13:6399–6406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhong XY, Zhang LH, Jia SQ, Shi T, Niu ZJ, Du H, Zhang GG, Hu Y, Lu AP, Li JY, Ji JF (2008) Positive association of up-regulated Cripto-1 and down-regulated E-cadherin with tumour progression and poor prognosis in gastric cancer. Histopathology 52:560–568

    Article  PubMed  Google Scholar 

  85. Vougioukalaki M, Kanellis DC, Gkouskou K, Eliopoulos AG (2011) Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett 304:80–89

    Article  CAS  PubMed  Google Scholar 

  86. Ohara R, Hirota S, Onoue H, Nomura S, Kitamura Y, Toyoshima K (1995) Identification of the cells expressing cot proto-oncogene mRNA. J Cell Sci 108:97–103

    CAS  PubMed  Google Scholar 

  87. Pan HC, Lai DW, Lan KH, Shen CC, Wu SM, Chiu CS, Wang KB, Sheu ML (2013) Honokiol thwarts gastric tumor growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model. Carcinogenesis 34:2568–2579

    Article  CAS  PubMed  Google Scholar 

  88. Li YL, Vergne J, Torchet C, Maurel MC (2009) In vitro selection of adenine-dependent ribozyme against Tpl2/Cot oncogene. FEBS J 276:303–314

    Article  CAS  PubMed  Google Scholar 

  89. Perfield JW 2nd, Lee Y, Shulman GI, Samuel VT, Jurczak MJ, Chang E, Xie C, Tsichlis PN, Obin MS, Greenberg AS (2011) Tumor progression locus 2 (TPL2) regulates obesity-associated inflammation and insulin resistance. Diabetes 60:1168–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yunlan L, Juan Z (2014) Qingshan L (2014) Antitumor activity of di-n-butyl-(2,6-difluorobenzohydrox-amato)tin (IV) against human gastric carcino-ma SGC-7901 cells via G2/M cell cycle arrest and cell apoptosis. PLoS ONE 9:e90793

    Article  PubMed  PubMed Central  Google Scholar 

  91. Su CC (2014) Tanshinone IIA inhibits gastric carcino-ma AGS cells through increasing p-p38, p-JNK and p53 but reducing p-ERK, CDC2 and cyclin B1 expression. Anticancer Res 34:7097–7110

    CAS  PubMed  Google Scholar 

  92. Yan B, Peng ZY (2015) Honokiol induces cell cycle arrest and apoptosis in human gastric carcinoma MGC-803 cell line. Int J Clin Exp Med 8:5454–5461

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW, Wollman J, Herschman H, Dubinett SM (1998) Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 58:1208–1216

    CAS  PubMed  Google Scholar 

  94. Hida T, Yatabe Y, Achiwa H, Muramatsu H, Kozaki K, Nakamura S, Ogawa M, Mitsudomi T, Sugiura T, Takahashi T (1998) Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 58:3761–3764

    CAS  PubMed  Google Scholar 

  95. Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimäki A (1998) Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 58:4997–5001

    CAS  PubMed  Google Scholar 

  96. Hosomi Y, Yokose T, Hirose Y, Nakajima R, Nagai K, Nishiwaki Y, Ochiai A (2000) Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 30:73–81

    Article  CAS  PubMed  Google Scholar 

  97. Singh T, Katiyar SK (2013) Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE2-mediated activation of β-catenin signaling. PLoS ONE 8:e60749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tuynman JB, Vermeulen L, Boon EM, Kemper K, Zwinderman AH, Peppelenbosch MP, Richel DJ (2008) Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res 68:1213–1220

    Article  CAS  PubMed  Google Scholar 

  99. Shlomo H, Simon JA (2008) A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPARgamma and PPARdelta activities. Mol Cancer Ther 7:521–529

    Article  Google Scholar 

  100. Wharry CE, Haines KM, Carroll RG, May MJ (2009) Constitutive noncanonical NF-kappaB signaling in pancreatic cancer cells. Cancer Biol Ther 8:1567–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arora S, Bhardwaj A, Srivastava SK, Singh S, McClellan S, Wang B, Singh AP (2011) Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS ONE 6:e21573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arora S, Singh S, Piazza GA, Contreras CM, Panyam J, Singh AP (2012) Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med 12:1244–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work reported from Dr. Katiyar’s research laboratory was financially supported from the funds from National Cancer Institute/NIH (CA183869) and Veterans Administration Merit Review Award (1I01BX001410). The content of this communication does not necessarily reflect the views or policies of the funding agencies.

Conflict of interest

The author has declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prasad, R., Katiyar, S.K. (2016). Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Anti-inflammatory Nutraceuticals and Chronic Diseases. Advances in Experimental Medicine and Biology, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-41334-1_11

Download citation

Publish with us

Policies and ethics