Skip to main content

From Compositional Chemical Ecologies to Self-replicating Ribosomes and on to Functional Trait Ecological Networks

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

In contrast to theories arguing that cellular life has evolved to transmit genes, we propose instead that cellular life evolved to facilitate the full potential of self-replicating ribosomes. Our theory explicitly rejects “master molecule” theories such as Dawkins’s “selfish gene” in favor of the emergence of life by means of systems of increasingly networked interactions that carried out metabolic and genetic functions concurrently within a complex chemical ecology. The critical role of networking chemical interactions within this ecology was (as it still is) mediated by all possible forms of molecular complementarity, of which base-pairing in RNA and DNA is just one. Selection for molecular complementarity functional and structural modules vastly increased the probability that networked systems would evolve, eventually resulting in the first self-replicating entity, which we believe was the ribosome. We make six predictions from our ribosome-first theory of cellular evolution that may seem, at first glance, heretical: (1) Ribosomal RNA (rRNA) contains genetic information encoding its own proteins, meaning that it also encodes messenger RNA (mRNA); (2) these proteins bind to the rRNA to form the functional ribosomal structure, but since the rRNA is also functioning as mRNA, the ribosomal proteins must bind to their own mRNA as well; (3) rRNA encodes all of the transfer RNAs (tRNA) required for the translation of its genetic information; (4) thus, tRNAs may be the precursor modules that gave rise to rRNA; (5) rRNA is pleiofunctional, integrating genetic, protein, translational, and structural information often in the same or overlapping sequences and in all reading frames; and (6) since the ribosome gave rise to cellular life, tRNA- and rRNA-like genetic information must be major building blocks from which cellular genomes evolved. We present evidence supporting all six of these apparently unlikely predictions. Our conclusion is that life is not about the evolution of genes, but the evolution of the kinds of networked interactions through complementarity that characterize ecologies: Genes evolved merely as storage units to “back up” ribosomal functions. This same complementarity-based approach may help to explain why functional traits, rather than genetic populations, appear to network interactions within higher-order systems such as ecosystems and holobionts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CR, Holling CS (eds) (2008) Discontinuities in ecosystems and other complex systems. Columbia University Press, New York

    Google Scholar 

  • Bada JL (2013) New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem Soc Rev 42(5):2186–2196. doi:10.1039/c3cs35433d

    Article  CAS  PubMed  Google Scholar 

  • Barthélémy RM, Grino M, Casanova JP, Faure E (2010) Ribin-like protein expression in the chaetognath Spadella cephaloptera. Int J Genet Mol Biol 2(2):20–29

    Google Scholar 

  • Bascompte J, Jordano P, Melián C, Olesen J (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci 100:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch DP, McArthur B, Widdowson R, Spector D, Guimaraes RC, Smith J (1983) tRNA-rRNA sequence homologies: evidence for a common evolutionary origin? J Mol Evol 19(6):420–428

    Article  CAS  PubMed  Google Scholar 

  • Bloch D, McArthur B, Mirrop S (1984) tRNA-rRNA sequence homologies: evidence for an ancient modular format shared by tRNAs and rRNAs. BioSystems 17:209–225. doi:10.1016/0303-2647(85)90075-9

    Article  Google Scholar 

  • Bloch DP, McArthur B, Guimarães RC, Smith J, Staves MP (1989) tRNA-rRNA sequence matches from inter- and intraspecies comparisons suggest common origins for the two RNAs. Braz J Med Biol Res 22(8):931–944

    CAS  PubMed  Google Scholar 

  • Bonawitz ND, Chatenay-Lapointe M, Wearn CM, Shadel GS (2008) Expression of the rDNA-encoded mitochondrial protein Tar1p is stringently controlled and responds differentially to mitochondrial respiratory demand and dysfunction. Curr Genet 54(2):83–94. doi:10.1007/s00294-008-0203-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JC, Hud NV, Williams LD (2015) The ribosome challenge to the RNA world. J Mol Evol 80(3–4):143–161. doi:10.1007/s00239-015-9669-9

    Article  CAS  PubMed  Google Scholar 

  • Braakman R, Smith E (2013) The compositional and evolutionary logic of metabolism. Phys Biol 10:011001. doi:10.1088/1478-3975/10/1/011001

    Article  PubMed  Google Scholar 

  • Brandman R, Brandman Y, Pande VS (2012) Sequence coevolution between RNA and protein characterized by mutual information between residue triplets. PLoS ONE 7(1):e30022. doi:10.1371/journal.pone.0030022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caetano-Anollés G (2002) Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res 30(11):2575–2587

    Article  PubMed  PubMed Central  Google Scholar 

  • Caetano-Anollés D, Caetano-Anollés G (2015) Ribosomal accretion, apriorism and the phylogenetic method: a response to Petrov and Williams. Front Genet 6:194. doi:10.3389/fgene.2015.00194

    PubMed  PubMed Central  Google Scholar 

  • Caetano-Anolles G, Seufferheld MJ (2013) The coevolutionary roots of biochemistry and cellular organization challenge the RNA world paradigm. J Mol Microbiol Biotechnol 23(1–2):152–177

    Article  CAS  PubMed  Google Scholar 

  • Chevalier BS, Stoddard BL (2011) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29(18):3757–3774

    Article  Google Scholar 

  • Chiu L, Gilbert S (2015) The birth of the holobiont. Multi-species birthing through mutual scaffolding and niche construction. Biosemiotics 8:191–210. doi:10.1007/s12304-015-9232-5

    Google Scholar 

  • Coelho PS, Bryan AC, Kumar A, Shadel GS, Snyder M (2002) A novel mitochondrial protein, Tar1p, is encoded on the antisense strand of the nuclear 25S rDNA. Genes Dev 16(21):2755–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corenblit D, Steiger J, Gurnell AM, Naiman RJ (2009) Plants intertwine fluvial landform dynamics with ecological succession and natural selection: a niche construction perspective for riparian systems. Global Ecol Biogeogr 18(4):507–520

    Google Scholar 

  • Crick FHC (1981) Life itself. Simon and Schuster, New York

    Google Scholar 

  • Csermely, P (2009) Weak links. The universal key to the stability of networks and complex systems. Berlin, Springer

    Google Scholar 

  • Dam M, Douthwaite S, Tenson T, Mankin AS (1996) Mutations in domain II of 23 S rRNA facilitate translation of a 23 S rRNA-encoded pentapeptide conferring erythromycin resistance. J Mol Biol 259(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Darwin Charles (1859) On the origin of species. Murray, London

    Google Scholar 

  • Dawkins Richard (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JH, Bardgett RD, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19(10):2873–2893

    Google Scholar 

  • De Farias ST (2013) Suggested phylogeny of tRNAs based on the construction of ancestral sequences. J Theor Biol 335(245–248):2013. doi:10.1016/j.jtbi.06.033

    Google Scholar 

  • De Farias ST, do Rêgo TG, José MV (2014) Evolution of transfer RNA and the origin of the translation system. Front Genet 28(5):303–313. http://dx.doi.org/10.3389/fgene.2014.00303

  • Díaz S, Hodson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Vegetation Sci 15:295–304

    Article  Google Scholar 

  • Dykxhoorn DM, St. Pierre R, Linn T (1996) Synthesis of the beta and beta’ subunits of Escherichia coli RNA polymerase is autogenously regulated in vivo by both transcriptional and translational mechanisms. Mol Microbiol 19(3):483–493

    Google Scholar 

  • Fox GE (2010) Origin and evolution of the ribosome. Persp Biol, Cold Spring Harb. doi:10.1101/cshperspect.a003483

    Google Scholar 

  • Fukuda R, Taketo M, Ishihama A (1978) Autogenous regulation of RNA polymerase beta subunit synthesis in vitro. J Biol Chem 253(13):4501–4504

    CAS  PubMed  Google Scholar 

  • Galadino R, Botta G, Pino S, Costanzo G, DiMauro E (2012) Genetics first or metabolism first? The formamide clue. Chem Soc Rev 41(16):5526–5565

    Article  Google Scholar 

  • Galopier A, Hermann-Le Denmat S (2011) Mitochondria of the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis contain nuclear rDNA-encoded proteins. PLoS ONE 6(1):e16325. doi:10.1371/journal.pone.0016325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert SF, McDonald E, Boyle N, Buttino N, Gyi L, Mai M, Prakash N, Robinson J (2010) Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Phil Trans Roy Soc 365:671–678

    Article  Google Scholar 

  • Gimautdinova OI, Karpova GG, Knorre DG, Kobetz ND (1981) The proteins of the messenger RNA binding site of Escherichia coli ribosomes. Nucl Acids Res 9(14):3465–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González A, Allesina S, Rodrigo A, Bosch J (2012) Drivers of compartmentalization in a Mediterranean pollination network. Oikos 121:2001–2013

    Article  Google Scholar 

  • Graham S, Hassan H, Burkett-Cadena N, Guyer C, Unnasch T (2009) Nestedness of ectoparasite-vertebrate host networks. PLoS ONE 4

    Google Scholar 

  • Gregory RJ, Cahill PB, Thurlow DL, Zimmermann RA (1988) Interaction of Escherichia coli ribosomal protein S8 with its binding sites in ribosomal RNA and messenger RNA. J Mol Biol 204(2):295–307

    Article  CAS  PubMed  Google Scholar 

  • Gross R, Fouxon I, Lancet D, Markovitch O (2014) Quasispecies in population of compositional assemblies. BMC Evol Biol 14:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Guimarães Jr P, Rico-Gray V, Oliveira P, Izzo T, Reis S, Thompson J (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr Biol 17

    Google Scholar 

  • Hoyle F (1983) Intelligent universe. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Hunding A, Kepes F, Lancet D, Minsky A, Norris V, Raine D, Sriram K, Root-Bernstein R (2006) Compositional complementarity and prebiotic ecology in the origin of life. BioEssays 28(4):399–412

    Article  CAS  PubMed  Google Scholar 

  • Jacobson H (1955) Information, reproduction and the origin of life. Am Scientist 43:119–127

    Google Scholar 

  • Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322(5900):404. doi:10.1126/science.1161527

    Article  CAS  PubMed  Google Scholar 

  • Kermekchiev M, Ivanova L (2001) Ribin, a protein encoded by a message complementary to rRNA, modulates ribosomal transcription and cell proliferation. Mol Cell Biol 21(24):8255–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kissling WD, Schleuning M (2015) Multispecies interactions across trophic levels at macroscales: retrospective and future directions. Ecography 38(4): 346–357

    Google Scholar 

  • Kong Q, Stockinger MP, Chang Y, Tashiro H, Lin CL (2008) The presence of rRNA sequences in polyadenylated RNA and its potential functions. Biotechnol J 3(8):1041–1046. doi:10.1002/biot.200800122

    Article  CAS  PubMed  Google Scholar 

  • Krasnov B, Fortuna M, Mouillot D, Khokhlova I, Shenbrot G, Poulin R (2012) Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am Naturalist 179:501–511

    Article  Google Scholar 

  • Lomolino MV, Sax DF, Brown JH (2004) Foundations of biogeography: classic papers with commentaries. University of Chicago Press, Chicago

    Google Scholar 

  • Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, Val J (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335(6065):214–218

    Google Scholar 

  • Mann S (2012) Systems of creation: the emergence of life from nonliving matter. Acc Chem Res 45:2131–2141

    Article  CAS  PubMed  Google Scholar 

  • Mauro VP, Edelman GM (1997) rRNA-like sequences occur in diverse primary transcripts: implications for the control of gene expression. Proc Natl Acad Sci U.S.A. 94(2):422–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185

    Article  PubMed  Google Scholar 

  • Mignone F, Pesole G (2002) rRNA-like sequences in human mRNAs. Appl Bioinform 1(3):145–154

    CAS  Google Scholar 

  • Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117(3046):528–529. doi:10.1126/science.117.3046.528

    Article  CAS  PubMed  Google Scholar 

  • Mushegian A (2005) Protein content of minimal and ancestral ribosome. RNA 11:1400–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mushegian A (2008) Gene content of LUCA, the last universal common ancestor. Front Biosci 13:4657–4666. http://www.ncbi.nlm.nih.gov/pubmed/18508537

    Google Scholar 

  • Neveu M, Kim HJ, Benner SA (2013) The “strong” RNA world hypothesis: fifty years old. Astrobiology 13(4):391–403

    Article  PubMed  Google Scholar 

  • Nomura M, Yates JL, Dean D, Post LE (1980) Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein mRNA. Proc Natl Acad Sci U.S.A. 77:7084–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norris V, Loutelier-Bourhis C, Thierry A (2012) How did metabolism and genetic replication get married? Orig Life Evol Biosph 42(5):487–495

    Article  CAS  PubMed  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Odling-Smee FJ, Erwin DH, Palkovacs EP, Feldman MW, Laland K (2013) Niche construction theory: a practical guide for ecologists. Q Rev Biol 88(1):3–28

    Article  Google Scholar 

  • Olins PO, Nomura M (1981) Translational regulation by ribosomal protein S8 in Escherichia coli: structural homology between rRNA binding site and feedback target on mRNA. Nucleic Acids Res 9(7):1757–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paley W (1824) Natural theology. S. King, New York

    Google Scholar 

  • Passador L, Linn T (1992) An internal region of rpoB is required for autogenous translational regulation of the beta subunit of Escherichia coli RNA polymerase. J Bacteriol 174(22):7174–7179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Real LA, Brown JH (eds) (1991) Foundations of ecology: classic papers with commentaries. University of Chicago Press, Chicago

    Google Scholar 

  • Robert F, Brakier-Gingras L (2001) Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA. Nucleic Acids Res 29(3):677–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Root-Bernstein R (2012) A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc Chem Res 45(12):2169–2177. doi:10.1021/ar200209k; http://pubs.acs.org/toc/achre4/45/12

    Google Scholar 

  • Root-Bernstein RS, Dillon PF (1997) Molecular complementarity 1: The molecular complementarity theory of the origin and evolution of life. J Theor Biol 188:447–479

    Article  CAS  PubMed  Google Scholar 

  • Root-Bernstein M, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–158. doi:10.1016/j.jtbi.2014.11.025

    Article  CAS  PubMed  Google Scholar 

  • Root-Bernstein RS, Root-Bernstein MM (2016) The ribosome as a missing link in prebiotic evolution II: ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs. J Theor Biol 397:115–127

    Google Scholar 

  • Rosenburg E, Zilber-Rosenburg I (2008) From bacterial bleaching to the hologenome theory of evolution. Proceedings of 11th annual coral reef symposium session, vol 9. pp 269–273

    Google Scholar 

  • Roth KM, Wolf MK, Rossi M, Butler JS (2005) The nuclear exosome contributes to autogenous control of NAB2 mRNA levels. Mol Cell Biol 25:1577–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleuning M, Ingmann L, Strauß R, Fritz S, Dalsgaard B, Dehling M, Plein M, Saavedra F, Sandel B, Svenning J, Böhning-Gaese K, Dormann C (2014) Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol Lett 17:454–463

    Article  PubMed  Google Scholar 

  • Schmitz J (2012) SINEs as driving forces in genome evolution. Genome Dyn. 7:92–107. doi: 10.1159/000337117

    Google Scholar 

  • Simon H (1969) The sciences of the artificial. M.I.T. Press, Cambridge, M. A

    Google Scholar 

  • Smit AF, Riggs AD (1995) MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 23(1):98–102

    Google Scholar 

  • Steinmetz EJ, Conrad NK, Brow DA, Corden JL (2001) RNA-binding protein Nrd1 directs poly(A)-independent 3’-end formation of RNA polymerase II transcripts. Nature 413:327–331

    Article  CAS  PubMed  Google Scholar 

  • Steward KL, Linn T (1992) Transcription frequency modulates the efficiency of an attenuator preceding the rpoBC RNA polymerase genes of Escherichia coli: possible autogenous control. Nucleic Acids Res 20(18):4773–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stouffer D, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci U.S.A. 108:3648–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stouffer DB, Sales-Pardo M, Leicht EA, Newman M (2010) Origin of compartmentalization in food webs. Ecology 91(10):2941–2951

    Article  PubMed  Google Scholar 

  • Strobel SA (2001) Repopulating the RNA world. Nature 411:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Tenson T, Mankin A (1995) Comparison of functional peptide encoded in the Escherichia coli 23S rRNA with other peptides involved in cis-regulation of translation. Biochem Cell Biol 73(11–12):1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Tenson T, DeBlasio A, Mankin A (1996) A functional peptide encoded in the Escherichia coli 23S rRNA Proc. Natl Acad Sci USA 93:5641–5646

    Google Scholar 

  • Thrall P, Hochberg M, Burdon J, Bever J (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    Article  PubMed  Google Scholar 

  • Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46. doi:10.1038/nrg3117

    Google Scholar 

  • Van Gemen B, Twisk J, van Knippenberg PH (1989) Autogenous regulation of the Escherichia coli ksgA gene at the level of translation. J Bacteriol 171(7):4002–4008

    PubMed  PubMed Central  Google Scholar 

  • Vilhena D, Antonelli A (2015) A network approach for identifying and delimiting biogeographical regions. Nature Commun 6:6848

    Article  CAS  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892

    Article  Google Scholar 

  • Wang J, Dasgupta I, Fox GE (2009) Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters. Archaea 2(4):241–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenny DG, Levey DJ (1998) Seed dispersal by bellbirds in a tropical cloud forest. Proc Nat Acad Sci U.S.A. 95(11):6204–6207

    Article  CAS  Google Scholar 

  • Werner E, Peacor S (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the US National Science Foundation for granting support and Professors Patrick F. Dillon and Adam W. Brown of Michigan State University and Professors Vic Norris and Corinne Loutellier-Bourhis of the University of Rouen, as well as two of our students, Tyler Rhinesmith and Andrew Baker, for their invaluable assistance and their feedback during the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Root-Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Root-Bernstein, R., Root-Bernstein, M. (2016). From Compositional Chemical Ecologies to Self-replicating Ribosomes and on to Functional Trait Ecological Networks. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-41324-2_19

Download citation

Publish with us

Policies and ethics