Three-dimensional Genomic Organization of Genes’ Function in Eukaryotes

  • Alon Diament
  • Tamir TullerEmail author


It is well known that in prokaryotes, genes are organized in transcription units called operons. Since each operon includes genes which are related to the same pathway, a relation between genomic proximity and functionality can be easily observed. In eukaryotes, usually there are no operons; however, in the last few decades, there have been growing evidence that the organization of eukaryotic genes is not random: Evolution shapes gene organization in eukaryotes in a way that will improve the organism’s fitness. In this chapter, we will review how previous studies in the field employed sophisticated experiments and analysis tools to decipher the way genes are organized in eukaryotic genomes.


Genomic Organization Chromosome Territory CTCF Binding CTCF Binding Site Chromosome Conformation Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



AD is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship. This study was supported in part by a fellowship from the Edmond J. Safra Center for Bioinformatics at Tel Aviv University.


  1. Ay F, Bailey TL, Noble WS (2014a) Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 2014a Feb 5; gr. 160374.113Google Scholar
  2. Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert J-P et al (2014b) Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res 24(6):974–988CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babaei S, Akhtar W, de Jong J, Reinders M, de Ridder J (2015) 3D hotspots of recurrent retroviral insertions reveal long-range interactions with cancer genes. Nat Commun 27(6):6381CrossRefGoogle Scholar
  4. Bártová E, Kozubek S (2006) Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 98(6):323–336CrossRefPubMedGoogle Scholar
  5. Batada NN, Hurst LD (2007) Evolution of chromosome organization driven by selection for reduced gene expression noise. Nat Genet 39(8):945–949CrossRefPubMedGoogle Scholar
  6. Belmont AS (2001) Visualizing chromosome dynamics with GFP. Trends Cell Biol 11(6):250–257CrossRefPubMedGoogle Scholar
  7. Ben-Elazar S, Yakhini Z, Yanai I (2013) Spatial localization of co-regulated genes exceeds genomic gene clustering in the Saccharomyces cerevisiae genome. Nucleic Acids Res 41(4):2191–2201CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bickmore WA, Teague P (2002) Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res 10(8):707–715CrossRefPubMedGoogle Scholar
  9. Blumenthal T, Evans D, Link CD, Guffanti A, Lawson D, Thierry-Mieg J et al (2002) A global analysis of Caenorhabditis elegans operons. Nature 417(6891):851–854CrossRefPubMedGoogle Scholar
  10. Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, Redwood AB et al (2015) Loss of lamin a function increases chromatin dynamics in the nuclear interior. Nat Commun 24(6):8044CrossRefGoogle Scholar
  11. Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P et al (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291(5507):1289–1292CrossRefPubMedGoogle Scholar
  12. Chen Y, Dokholyan NV (2006) The coordinated evolution of yeast proteins is constrained by functional modularity. Trends Genet 22(8):416–419CrossRefPubMedGoogle Scholar
  13. Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho Y-J et al (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147(1):107–119CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cohen BA, Mitra RD, Hughes JD, Church GM (2000) A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat Genet 26(2):183–186CrossRefPubMedGoogle Scholar
  15. Cook PR (2002) Predicting three-dimensional genome structure from transcriptional activity. Nat Genet 32(3):347–352CrossRefPubMedGoogle Scholar
  16. Corces MR, Corces VG (2016) The three-dimensional cancer genome. Curr Opin Genet Dev 36:1–7Google Scholar
  17. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS et al (2010) The genetic landscape of a cell. Science 327(5964):425–431CrossRefPubMedGoogle Scholar
  18. Cournac A, Marie-Nelly H, Marbouty M, Koszul R, Mozziconacci J (2012) Normalization of a chromosomal contact map. BMC Genom 13(1):436CrossRefGoogle Scholar
  19. Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18(3):307–316CrossRefPubMedGoogle Scholar
  20. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311CrossRefPubMedGoogle Scholar
  21. Diament A, Tuller T (2015) Improving 3D genome reconstructions using orthologous and functional constraints. PLoS Comput Biol 11(5):e1004298CrossRefPubMedPubMedCentralGoogle Scholar
  22. Diament A, Pinter RY, Tuller T (2014) Three-dimensional eukaryotic genomic organization is strongly correlated with codon usage expression and function. Nat Commun 5:5876Google Scholar
  23. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY et al (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518(7539):331–336CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309CrossRefPubMedPubMedCentralGoogle Scholar
  26. Doyle B, Fudenberg G, Imakaev M, Mirny LA (2014) Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLoS Comput Biol 10(10):e1003867CrossRefPubMedPubMedCentralGoogle Scholar
  27. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C et al (2010) A three-dimensional model of the yeast genome. Nature 465(7296):363–367CrossRefPubMedPubMedCentralGoogle Scholar
  28. Field B, Osbourn AE (2008) Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science 320(5875):543–547CrossRefPubMedGoogle Scholar
  29. Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12(10):663–670CrossRefPubMedGoogle Scholar
  30. Fullwood MJ, Ruan Y (2009) ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107(1):30–39CrossRefPubMedPubMedCentralGoogle Scholar
  31. Geeven G, Zhu Y, Kim BJ, Bartholdy BA, Yang S-M, Macfarlan TS et al (2015) Local compartment changes and regulatory landscape alterations in histone H1-depleted cells. Genome Biol 16:289CrossRefPubMedPubMedCentralGoogle Scholar
  32. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. PNAS 99(12):7821–7826CrossRefPubMedPubMedCentralGoogle Scholar
  33. Grubert F, Zaugg JB, Kasowski M, Ursu O, Spacek DV, Martin AR et al (2015) Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162(5):1051–1065Google Scholar
  34. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951CrossRefPubMedGoogle Scholar
  35. Hakim O, Resch W, Yamane A, Klein I, Kieffer-Kwon K-R, Jankovic M et al (2012) DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484(7392):69–74PubMedPubMedCentralGoogle Scholar
  36. Homouz D, Kudlicki AS (2013) The 3D organization of the yeast genome correlates with co-expression and reflects functional relations between genes. PLoS ONE 8(1):e54699CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hsieh T-HS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162(1):108–119Google Scholar
  38. Hurst LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5(4):299–310CrossRefPubMedGoogle Scholar
  39. Huvet M, Nicolay S, Touchon M, Audit B, d’Aubenton-Carafa Y, Arneodo A et al (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17(9):000–000Google Scholar
  40. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR et al (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9(10):999–1003CrossRefPubMedPubMedCentralGoogle Scholar
  41. Imakaev MV, Fudenberg G, Mirny LA (2015) Modeling chromosomes: Beyond pretty pictures. FEBS Lett 589(20, Part A):3031–3036Google Scholar
  42. Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotech 30(1):90–98CrossRefGoogle Scholar
  43. Karathia H, Kingsford C, Girvan M, Hannenhalli S (2015) A pathway-centric view of spatial proximity in the 3D nucleome across cell lines. BioRxiv 027045Google Scholar
  44. Katainen R, Dave K, Pitkänen E, Palin K, Kivioja T, Välimäki N et al (2015) CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet 47(7):818–821Google Scholar
  45. Kim T-M, Xi R, Luquette LJ, Park RW, Johnson MD, Park PJ (2013) Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res 23(2):217–227Google Scholar
  46. Kim SH, McQueen PG, Lichtman MK, Shevach EM, Parada LA, Misteli T (2004) Spatial genome organization during T-cell differentiation. Cytogenet Genome Res 105(2–4):292–301CrossRefPubMedGoogle Scholar
  47. Kosak ST, Groudine M (2004) Gene order and dynamic domains. Science 306(5696):644–647CrossRefPubMedGoogle Scholar
  48. Kosak ST, Skok JA, Medina KL, Riblet R, Beau MML, Fisher AG et al (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296(5565):158–162CrossRefPubMedGoogle Scholar
  49. Kruse K, Sewitz S, Babu MM (2013) A complex network framework for unbiased statistical analyses of DNA–DNA contact maps. Nucl Acids Res 41(2):701–710CrossRefPubMedGoogle Scholar
  50. Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79(14):4381–4385CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lee JM, Sonnhammer ELL (2003) Genomic gene clustering analysis of pathways in eukaryotes. Genome Res 13(5):875–882CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lercher MJ, Urrutia AO, Hurst LD (2002) Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat Genet 31(2):180–183CrossRefPubMedGoogle Scholar
  53. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5):1012–1025CrossRefPubMedPubMedCentralGoogle Scholar
  55. Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285(5428):751–753CrossRefPubMedGoogle Scholar
  56. Martin J, Lercher AOU (2003) A unification of mosaic structures in the human genome. Hum Mol Genet 12(19):2411–2415CrossRefGoogle Scholar
  57. Meaburn KJ, Misteli T, Soutoglou E (2007) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17(1):80–90CrossRefPubMedGoogle Scholar
  58. Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L et al (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47(6):598–606CrossRefPubMedGoogle Scholar
  59. Miller MA, Cutter AD, Yamamoto I, Ward S, Greenstein D (2004) Clustered organization of reproductive genes in the C. elegans genome. Curr Biol 14(14):1284–1290CrossRefPubMedGoogle Scholar
  60. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800CrossRefPubMedGoogle Scholar
  61. Mitra K, Carvunis A-R, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14(10):719–732CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mizuguchi T, Fudenberg G, Mehta S, Belton J-M, Taneja N, Folco HD et al (2014) Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516(7531):432–435CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64CrossRefPubMedGoogle Scholar
  64. Nagano T, Várnai C, Schoenfelder S, Javierre B-M, Wingett SW, Fraser P (2015) Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol 16:175CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385CrossRefPubMedPubMedCentralGoogle Scholar
  66. Oliveira TY, Resch W, Jankovic M, Casellas R, Nussenzweig MC, Klein IA (2012) Translocation capture sequencing: a method for high throughput mapping of chromosomal rearrangements. J Immunol Methods 375(1–2):176–181CrossRefPubMedGoogle Scholar
  67. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E et al (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36(10):1065–1071CrossRefPubMedGoogle Scholar
  68. Osbourn AE, Field B (2009) Operons. Cell Mol Life Sci 66(23):3755–3775CrossRefPubMedPubMedCentralGoogle Scholar
  69. Pál C, Hurst LD (2003) Evidence for co-evolution of gene order and recombination rate. Nat Genet 33(3):392–395CrossRefPubMedGoogle Scholar
  70. Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K (2007) Evidence of a large-scale functional organization of mammalian chromosomes. PLoS Biol 5(5):e127CrossRefPubMedPubMedCentralGoogle Scholar
  71. Poyatos JF, Hurst LD (2007) The determinants of gene order conservation in yeasts. Genome Biol 8(11):R233CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pritykin Y, Singh M (2013) Simple topological features reflect dynamics and modularity in protein interaction networks. PLoS Comput Biol 9(10):e1003243CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680CrossRefPubMedGoogle Scholar
  74. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555CrossRefPubMedGoogle Scholar
  75. Rousseau M, Fraser J, Ferraiuolo MA, Dostie J, Blanchette M (2011) Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics 25(12):414CrossRefGoogle Scholar
  76. Roy PJ, Stuart JM, Lund J, Kim SK (2002) Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418(6901):975–979PubMedGoogle Scholar
  77. Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J (2000) Operons in Escherichia coli: genomic analyses and predictions. Proc Natl Acad Sci US A 97(12):6652–6657CrossRefGoogle Scholar
  78. Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH, Jewett AI et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 112(47):E6456–E6465CrossRefPubMedPubMedCentralGoogle Scholar
  79. Schmidt T, Schwarzacher T, Heslop-Harrison JS (1994) Physical mapping of rRNA genes by fluorescent in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theoret Appl Genet 88(6–7):629–636CrossRefGoogle Scholar
  80. Schuster-Böckler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488(7412):504–507CrossRefPubMedGoogle Scholar
  81. Sémon M, Duret L (2006) Evolutionary origin and maintenance of coexpressed gene clusters in mammals. Mol Biol Evol 23(9):1715–1723CrossRefPubMedGoogle Scholar
  82. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M et al (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458–472CrossRefPubMedGoogle Scholar
  83. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38(11):1348–1354CrossRefPubMedGoogle Scholar
  84. Singer GAC, Lloyd AT, Huminiecki LB, Wolfe KH (2005) Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. Mol Biol Evol 22(3):767–775CrossRefPubMedGoogle Scholar
  85. Slot JC, Rokas A (2010) Multiple GAL pathway gene clusters evolved independently and by different mechanisms in fungi. PNAS 107(22):10136–10141CrossRefPubMedPubMedCentralGoogle Scholar
  86. Speicher MR, Ballard SG, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12(4):368–375CrossRefPubMedGoogle Scholar
  87. Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJG, Zhu Y et al (2011) The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 25(13):1371–1383CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sproul D, Gilbert N, Bickmore WA (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6(10):775–781CrossRefPubMedGoogle Scholar
  89. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255CrossRefPubMedGoogle Scholar
  90. Tanizawa H, Iwasaki O, Tanaka A, Capizzi JR, Wickramasinghe P, Lee M et al (2010) Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucl Acids Res 38(22):8164–8177CrossRefPubMedPubMedCentralGoogle Scholar
  91. Teichmann SA, Veitia RA (2004) Genes encoding subunits of stable complexes are clustered on the yeast chromosomes. Genetics 167(4):2121–2125CrossRefPubMedPubMedCentralGoogle Scholar
  92. Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA (2014) Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science 346(6214):1238–1242CrossRefPubMedGoogle Scholar
  93. Thévenin A, Ein-Dor L, Ozery-Flato M, Shamir R (2014) Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome. Nucl Acids Res 42(15):9854–9861CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tjong H, Gong K, Chen L, Alber F (2012) Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res 22(7):1295–1305CrossRefPubMedPubMedCentralGoogle Scholar
  95. Tuller T, Rubinstein U, Bar D, Gurevitch M, Ruppin E, Kupiec M (2009) Higher-order genomic organization of cellular functions in yeast. J Comput Biol 16(2):303–316CrossRefPubMedGoogle Scholar
  96. van der Ploeg M (2000) Cytochemical nucleic acid research during the twentieth century. Euro J Histochem EJH 44(1):7–42Google Scholar
  97. Valton A-L, Dekker J (2016) TAD disruption as oncogenic driver. Curr Opin Genet Dev 36:34–40Google Scholar
  98. Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, Tanay A et al (2015) Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 10(8):1297–1309Google Scholar
  99. Weber CC, Hurst LD (2011) Support for multiple classes of local expression clusters in Drosophila melanogaster, but no evidence for gene order conservation. Genome Biol 12(3):1–15CrossRefGoogle Scholar
  100. Wijchers PJ, Krijger PHL, Geeven G, Zhu Y, Denker A, Verstegen MJAM et al (2016) Cause and consequence of tethering a SubTAD to different nuclear compartments. Mol cell 61(3):461–473Google Scholar
  101. Wong S, Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37(7):777–782CrossRefPubMedGoogle Scholar
  102. Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43(11):1059–1065CrossRefPubMedGoogle Scholar
  103. Zhang Y, McCord RP, Ho Y-J, Lajoie BR, Hildebrand DG, Simon AC et al (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148(5):908–921CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTel Aviv University (TAU)Tel AvivIsrael
  2. 2.The Sagol School of NeuroscienceTel-Aviv University (TAU)Tel-AvivIsrael

Personalised recommendations