Skip to main content

Proteases in Melanoma

  • Chapter
  • First Online:
Book cover Melanoma Development

Abstract

Several proteolytic enzymes, produced by the tumor cells themselves or by the “tumor-activated” stroma, have been implicated in the pathogenesis of cancer including melanoma. From the formation of a primary tumor to the invasion of the underlying connective tissue, as a prerequisite for metastasis a series of proteolytic events are necessary to modify not only the pericellular environment but also host-tumor communication. We shortly review the most important and characterized proteolytic enzymes, their degradative activities, and the impact that those events have on the progression of tumor cells through tissues. We will especially concentrate on those enzymes participating in cellular communication, cell adhesion and matrix remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abety AN, Fox JW, Schonefuss A, Zamek J, Landsberg J, Krieg T, Blobel C, Mauch C, Zigrino P (2012) Stromal fibroblast-specific expression of ADAM-9 modulates proliferation and apoptosis in melanoma cells in vitro and in vivo. J Invest Dermatol 132:2451–2458

    Article  CAS  PubMed  Google Scholar 

  • Airola K, Karonen T, Vaalamo M, Lehti K, Lohi J, Kariniemi AL, Keski-Oja J, Saarialho-Kere UK (1999) Expression of collagenases-1 and −3 and their inhibitors TIMP-1 and −3 correlates with the level of invasion in malignant melanomas. Br J Cancer 80:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aldrian S, Kindas-Mugge I, Trautinger F, Frohlich I, Gsur A, Herbacek I, Berger W, Micksche M (2003) Overexpression of Hsp27 in a human melanoma cell line: regulation of E-cadherin, MUC18/MCAM, and plasminogen activator (PA) system. Cell Stress Chaperones 8:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida EA, Huovila AP, Sutherland AE, Stephens LE, Calarco PG, Shaw LM, Mercurio AM, Sonnenberg A, Primakoff P, Myles DG, White JM (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Anderegg U, Eichenberg T, Parthaune T, Haiduk C, Saalbach A, Milkova L, Ludwig A, Grosche J, Averbeck M, Gebhardt C, Voelcker V, Sleeman JP, Simon JC (2009) ADAM10 is the constitutive functional sheddase of CD44 in human melanoma cells. J Invest Dermatol 129:1471–1482

    Article  CAS  PubMed  Google Scholar 

  • Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mole Life Sci CMLS 57:25–40

    Article  CAS  Google Scholar 

  • Antonicelli F, Bellon G, Debelle L, Hornebeck W (2007) Elastin-elastases and inflamm-aging. Curr Top Dev Biol 79:99–155

    Article  CAS  PubMed  Google Scholar 

  • Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, Lopez-Otin C (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35:252–257

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Coussens LM (2000) Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr Opin Genet Dev 10:120–127

    Article  CAS  PubMed  Google Scholar 

  • Bernard D, Mehul B, Thomas-Collignon A, Simonetti L, Remy V, Bernard MA, Schmidt R (2003) Analysis of proteins with caseinolytic activity in a human stratum corneum extract revealed a yet unidentified cysteine protease and identified the so-called “stratum corneum thiol protease” as cathepsin l2. J Invest Dermatol 120:592–600

    Article  CAS  PubMed  Google Scholar 

  • Besch R, Berking C, Kammerbauer C, Degitz K (2007) Inhibition of urokinase-type plasminogen activator receptor induces apoptosis in melanoma cells by activation of p53. Cell Death Differ 14:818–829

    Article  CAS  PubMed  Google Scholar 

  • Bianchini F, D’Alessio S, Fibbi G, Del Rosso M, Calorini L (2006) Cytokine-dependent invasiveness in B16 murine melanoma cells: role of uPA system and MMP-9. Oncol Rep 15:709–714

    CAS  PubMed  Google Scholar 

  • Billion K, Ibrahim H, Mauch C, Niessen CM (2006) Increased soluble E-cadherin in melanoma patients. Skin Pharmacol Physiol 19:65–70

    Article  CAS  PubMed  Google Scholar 

  • Black RA, White JM (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10:654–659

    Article  CAS  PubMed  Google Scholar 

  • Blackburn JS, Brinckerhoff CE (2008) Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am J Pathol 173:1736–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn JS, Liu I, Coon CI, Brinckerhoff CE (2009) A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene 28:4237–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120:303–313

    Article  CAS  PubMed  Google Scholar 

  • Bossard MJ, Tomaszek TA, Thompson SK, Amegadzie BY, Hanning CR, Jones C, Kurdyla JT, McNulty DE, Drake FH, Gowen M, Levy MA (1996) Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem 271:12517–12524

    Article  CAS  PubMed  Google Scholar 

  • Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez-Otin C (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283:49–62

    Article  CAS  PubMed  Google Scholar 

  • Chapman A, Fernandez del Ama L, Ferguson J, Kamarashev J, Wellbrock C, Hurlstone A (2014) Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep 8:688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cireap N, Narita D (2013) Molecular Profiling of ADAM12 and ADAM17 Genes in Human Malignant Melanoma. Pathol Oncol Res 19(4):755–62

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries TJ, van Muijen GN, Ruiter DJ (1996) The plasminogen activation system in melanoma cell lines and in melanocytic lesions. Melanoma Res 6:79–88

    Article  PubMed  Google Scholar 

  • Debniak T, Jakubowska A, Serrano-Fernandez P, Kurzawski G, Cybulski C, Chauhan SR, Laxton RC, Maleszka R, Lubinski J, Ye S (2011) Association of MMP8 gene variation with an increased risk of malignant melanoma. Melanoma Res 21:464–468

    Article  CAS  PubMed  Google Scholar 

  • Dennhofer R, Kurschat P, Zigrino P, Klose A, Bosserhoff A, van Muijen G, Krieg T, Mauch C, Hunzelmann N (2003) Invasion of melanoma cells into dermal connective tissue in vitro: evidence for an important role of cysteine proteases. Int J cancer J Int Du cancer 106:316–323

    Article  CAS  Google Scholar 

  • Devy L, Huang L, Naa L, Yanamandra N, Pieters H, Frans N, Chang E, Tao Q, Vanhove M, Lejeune A, van Gool R, Sexton DJ, Kuang G, Rank D, Hogan S, Pazmany C, Ma YL, Schoonbroodt S, Nixon AE, Ladner RC, Hoet R, Henderikx P, Tenhoor C, Rabbani SA, Valentino ML, Wood CR, Dransfield DT (2009) Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res 69:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Dufour A, Overall CM (2013) Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci 34:233–242

    Article  CAS  PubMed  Google Scholar 

  • Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289

    Article  CAS  PubMed  Google Scholar 

  • Felli N, Felicetti F, Lustri AM, Errico MC, Bottero L, Cannistraci A, De Feo A, Petrini M, Pedini F, Biffoni M, Alvino E, Negrini M, Ferracin M, Mattia G, Care A (2013) miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. PLoS One 8:e56824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrier CM, Suciu S, van Geloof WL, Straatman H, Eggermont AM, Koops HS, Kroon BB, Lejeune FJ, Kleeberg UR, van Muijen GN, Ruiter DJ (2000) High tPA-expression in primary melanoma of the limb correlates with good prognosis. Br J Cancer 83:1351–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjeldstad K, Kolset SO (2005) Decreasing the metastatic potential in cancers–targeting the heparan sulfate proteoglycans. Curr Drug Targets 6:665–682

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68:7247–7249

    Article  CAS  PubMed  Google Scholar 

  • Frohlich E, Schlagenhauff B, Mohrle M, Weber E, Klessen C, Rassner G (2001) Activity, expression, and transcription rate of the cathepsins B, D, H, and L in cutaneous malignant melanoma. Cancer 91:972–982

    Article  CAS  PubMed  Google Scholar 

  • Gangemi R, Amaro A, Gino A, Barisione G, Fabbi M, Pfeffer U, Brizzolara A, Queirolo P, Salvi S, Boccardo S, Gualco M, Spagnolo F, Jager MJ, Mosci C, Rossello A, Ferrini S (2014) ADAM10 correlates with uveal melanoma metastasis and promotes in vitro invasion. Pigment Cell Melanoma Res 27:1138–1148

    Article  CAS  PubMed  Google Scholar 

  • Grant GM, Giambernardi TA, Grant AM, Klebe RJ (1999) Overview of expression of matrix metalloproteinases (MMP-17, MMP-18, and MMP-20) in cultured human cells. Matrix Biol 18:145–148

    Article  CAS  PubMed  Google Scholar 

  • Guaiquil V, Swendeman S, Yoshida T, Chavala S, Campochiaro PA, Blobel CP (2009) ADAM9 is involved in pathological retinal neovascularization. Mol Cell Biol 29:2694–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guaiquil VH, Swendeman S, Zhou W, Guaiquil P, Weskamp G, Bartsch JW, Blobel CP (2010) ADAM8 is a negative regulator of retinal neovascularization and of the growth of heterotopically injected tumor cells in mice. J Mol Med (Berl) 88:497–505

    Article  CAS  Google Scholar 

  • Gutierrez-Fernandez A, Inada M, Balbin M, Fueyo A, Pitiot AS, Astudillo A, Hirose K, Hirata M, Shapiro SD, Noel A, Werb Z, Krane SM, Lopez-Otin C, Puente XS (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutwein P, Oleszewski M, Mechtersheimer S, Agmon-Levin N, Krauss K, Altevogt P (2000) Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J Biol Chem 275:15490–15497

    Article  CAS  PubMed  Google Scholar 

  • Hamano Y, Kalluri R (2005) Tumstatin, the NC1 domain of alpha3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth. Biochem Biophys Res Commun 333:292–298

    Article  CAS  PubMed  Google Scholar 

  • Hofmann UB, Westphal JR, Zendman AJ, Becker JC, Ruiter DJ, van Muijen GN (2000) Expression and activation of matrix metalloproteinase-2 (MMP-2) and its co-localization with membrane-type 1 matrix metalloproteinase (MT1-MMP) correlate with melanoma progression. J Pathol 191:245–256

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi K, Weskamp G, Lum L, Hammes HP, Cai H, Brodie TA, Ludwig T, Chiusaroli R, Baron R, Preissner KT, Manova K, Blobel CP (2003) Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol 23:5614–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornebeck W, Robinet A, Duca L, Antonicelli F, Wallach J, Bellon G (2005) The elastin connection and melanoma progression. Anticancer Res 25:2617–2625

    CAS  PubMed  Google Scholar 

  • Hsu MY, Meier FE, Nesbit M, Hsu JY, Van Belle P, Elder DE, Herlyn M (2000) E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol 156:1515–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humbert L, Lebrun JJ (2013) TGF-beta inhibits human cutaneous melanoma cell migration and invasion through regulation of the plasminogen activator system. Cell Signal 25:490–500

    Article  CAS  PubMed  Google Scholar 

  • Jean D, Bar-Eli M, Huang S, Xie K, Rodrigues-Lima F, Hermann J, Frade R (1996) A cysteine proteinase, which cleaves human C3, the third component of complement, is involved in tumorigenicity and metastasis of human melanoma. Cancer Res 56:254–258

    CAS  PubMed  Google Scholar 

  • Jiao Y, Feng X, Zhan Y, Wang R, Zheng S, Liu W, Zeng X (2012) Matrix metalloproteinase-2 promotes alphavbeta3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One 7:e41591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageshita T, Yoshii A, Kimura T, Maruo K, Ono T, Himeno M, Nishimura Y (1995) Biochemical and immunohistochemical analysis of cathepsins B, H, L and D in human melanocytic tumours. Arch Dermatol Res 287:266–272

    Article  CAS  PubMed  Google Scholar 

  • Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabata A, Kuroda R (2000) Protease-activated receptor (PAR), a novel family of G protein-coupled seven trans-membrane domain receptors: activation mechanisms and physiological roles. Jpn J Pharmacol 82:171–174

    Article  CAS  PubMed  Google Scholar 

  • Klose A, Wilbrand-Hennes A, Zigrino P, Weber E, Krieg T, Mauch C, Hunzelmann N (2006) Contact of high-invasive, but not low-invasive, melanoma cells to native collagen I induces the release of mature cathepsin B. Int J Cancer J Int Du Cancer 118:2735–2743

    Article  CAS  Google Scholar 

  • Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, Hayashi N (2010) Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 51:1264–1273

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sharghi-Namini S, Rao N, Ge R (2012) ADAMTS5 functions as an anti-angiogenic and anti-tumorigenic protein independent of its proteoglycanase activity. Am J Pathol 181:1056–1068

    Article  CAS  PubMed  Google Scholar 

  • Kurschat P, Wickenhauser C, Groth W, Krieg T, Mauch C (2002) Identification of activated matrix metalloproteinase-2 (MMP-2) as the main gelatinolytic enzyme in malignant melanoma by in situ zymography. J Pathol 197:179–187

    Article  CAS  PubMed  Google Scholar 

  • Kurschat P, Zigrino P, Nischt R, Breitkopf K, Steurer P, Klein CE, Krieg T, Mauch C (1999) Tissue inhibitor of matrix metalloproteinase-2 regulates matrix metalloproteinase-2 activation by modulation of membrane-type 1 matrix metalloproteinase activity in high and low invasive melanoma cell lines. J Biol Chem 274:21056–21062

    Article  CAS  PubMed  Google Scholar 

  • Lazar I, Clement E, Ducoux-Petit M, Denat L, Soldan V, Dauvillier S, Balor S, Burlet-Schiltz O, Larue L, Muller C, Nieto L (2015) Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines. Pigment Cell Melanoma Res 28:464–475

    Article  CAS  PubMed  Google Scholar 

  • Lederle W, Hartenstein B, Meides A, Kunzelmann H, Werb Z, Angel P, Mueller MM (2010) MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis 31:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Schramme A, Doberstein K, Dummer R, Abdel-Bakky MS, Keller S, Altevogt P, Oh ST, Reichrath J, Oxmann D, Pfeilschifter J, Mihic-Probst D, Gutwein P (2010) ADAM10 is upregulated in melanoma metastasis compared with primary melanoma. J Invest Dermatol 130:763–773

    Article  CAS  PubMed  Google Scholar 

  • Li A, Wun TC (1998) Proteolysis of tissue factor pathway inhibitor (TFPI) by plasmin: effect on TFPI activity. Thromb Haemost 80:423–427

    CAS  PubMed  Google Scholar 

  • Liu G, Atteridge CL, Wang X, Lundgren AD, Wu JD (2010) The membrane type matrix metalloproteinase MMP14 mediates constitutive shedding of MHC class I chain-related molecule A independent of A disintegrin and metalloproteinases. J Immunol 184:3346–3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wei Q, Gershenwald JE, Prieto VG, Lee JE, Duvic M, Grimm EA, Wang LE (2012) Influence of single nucleotide polymorphisms in the MMP1 promoter region on cutaneous melanoma progression. Melanoma Res 22:169–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loffek S, Zigrino P, Angel P, Anwald B, Krieg T, Mauch C (2005) High invasive melanoma cells induce matrix metalloproteinase-1 synthesis in fibroblasts by interleukin-1alpha and basic fibroblast growth factor-mediated mechanisms. J Invest Dermatol 124:638–643

    Article  PubMed  Google Scholar 

  • Lohi J (2001) Laminin-5 in the progression of carcinomas. Int J Cancer J Int Du Cancer 94:763–767

    Article  CAS  Google Scholar 

  • Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:1–25

    Google Scholar 

  • Ma J, Tang X, Wong P, Jacobs B, Borden EC, Bedogni B (2014) Noncanonical activation of Notch1 protein by membrane type 1 matrix metalloproteinase (MT1-MMP) controls melanoma cell proliferation. J Biol Chem 289:8442–8449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins WK, Esteves GH, Almeida OM, Rezze GG, Landman G, Marques SM, Carvalho AF, LF LR, Duprat JP, Stolf BS (2011) Gene network analyses point to the importance of human tissue kallikreins in melanoma progression. BMC Med Genomics 4:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massi D, Naldini A, Ardinghi C, Carraro F, Franchi A, Paglierani M, Tarantini F, Ketabchi S, Cirino G, Hollenberg MD, Geppetti P, Santucci M (2005) Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma. Hum Pathol 36:676–685

    Article  CAS  PubMed  Google Scholar 

  • Matarrese P, Ascione B, Ciarlo L, Vona R, Leonetti C, Scarsella M, Mileo AM, Catricala C, Paggi MG, Malorni W (2010) Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study. Mol Cancer 9:207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzocca A, Coppari R, De Franco R, Cho JY, Libermann TA, Pinzani M, Toker A (2005) A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res 65:4728–4738

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni E, Adam A, BaldeKier Joffe E, Aguirre-Ghiso JA (2003) Immortalized mammary epithelial cells overexpressing protein kinase C gamma acquire a malignant phenotype and become tumorigenic in vivo. Mol Cancer Res 1:776–787

    CAS  PubMed  Google Scholar 

  • McGuire JK, Li Q, Parks WC (2003) Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 162:1831–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnikova VO, Balasubramanian K, Villares GJ, Dobroff AS, Zigler M, Wang H, Petersson F, Price JE, Schroit A, Prieto VG, Hung MC, Bar-Eli M (2009) Crosstalk between protease-activated receptor 1 and platelet-activating factor receptor regulates melanoma cell adhesion molecule (MCAM/MUC18) expression and melanoma metastasis. J Biol Chem 284:28845–28855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moin K, Cao L, Day NA, Koblinski JE, Sloane BF (1998) Tumor cell membrane cathepsin B. Biol Chem 379:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Montel V, Kleeman J, Agarwal D, Spinella D, Kawai K, Tarin D (2004) Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res 64:1687–1694

    Article  CAS  PubMed  Google Scholar 

  • Moro N, Mauch C, Zigrino P (2014) Metalloproteinases in Melanoma. Eur J Cell Biol 93:23–29

    Article  CAS  PubMed  Google Scholar 

  • Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8:929–941

    Article  CAS  PubMed  Google Scholar 

  • Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J (1999) Mechanisms for pro matrix metalloproteinase activation. APMIS Acta Pathologica Microbiologica Et Immunolog Scand 107:38–44

    Article  CAS  Google Scholar 

  • Nakamura H, Suenaga N, Taniwaki K, Matsuki H, Yonezawa K, Fujii M, Okada Y, Seiki M (2004) Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase. Cancer Res 64:876–882

    Article  CAS  PubMed  Google Scholar 

  • Nath D, Slocombe PM, Stephens PE, Warn A, Hutchinson GR, Yamada KM, Docherty AJ, Murphy G (1999) Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci 112(Pt 4):579–587

    CAS  PubMed  Google Scholar 

  • Nath D, Slocombe PM, Webster A, Stephens PE, Docherty AJ, Murphy G (2000) Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(1)integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci 113(Pt 12):2319–2328

    CAS  PubMed  Google Scholar 

  • Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matrisian LM, Mareel M (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118

    CAS  PubMed  Google Scholar 

  • Ohnishi Y, Tajima S, Ishibashi A (2001) Coordinate expression of membrane type-matrix metalloproteinases-2 and 3 (MT2-MMP and MT3-MMP) and matrix metalloproteinase-2 (MMP-2) in primary and metastatic melanoma cells. Eur J Dermatol 11:420–423

    CAS  PubMed  Google Scholar 

  • Orgaz JL, Pandya P, Dalmeida R, Karagiannis P, Sanchez-Laorden B, Viros A, Albrengues J, Nestle FO, Ridley AJ, Gaggioli C, Marais R, Karagiannis SN, Sanz-Moreno V (2014) Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun 5:4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palavalli LH, Prickett TD, Wunderlich JR, Wei X, Burrell AS, Porter-Gill P, Davis S, Wang C, Cronin JC, Agrawal NS, Lin JC, Westbroek W, Hoogstraten-Miller S, Molinolo AA, Fetsch P, Filie AC, O’Connell MP, Banister CE, Howard JD, Buckhaults P, Weeraratna AT, Brody LC, Rosenberg SA, Samuels Y (2009) Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat Genet 41:518–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patarroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12:197–207

    Article  CAS  PubMed  Google Scholar 

  • Patterson BC, Sang QA (1997) Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272:28823–28825

    Article  CAS  PubMed  Google Scholar 

  • Qiu H, Tang X, Ma J, Shaverdashvili K, Zhang K, Bedogni B (2015) Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase. Mol Cell Biol 35:3622–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintanilla-Dieck MJ, Codriansky K, Keady M, Bhawan J, Runger TM (2008) Cathepsin K in melanoma invasion. J Invest Dermatol 128:2281–2288

    Article  CAS  PubMed  Google Scholar 

  • Rao N, Ke Z, Liu H, Ho CJ, Kumar S, Xiang W, Zhu Y, Ge R (2013) ADAMTS4 and its proteolytic fragments differentially affect melanoma growth and angiogenesis in mice. Int J Cancer J Int Du Cancer 133:294–306

    Article  CAS  Google Scholar 

  • Raza SL, Nehring LC, Shapiro SD, Cornelius LA (2000) Proteinase-activated receptor-1 regulation of macrophage elastase (MMP-12) secretion by serine proteinases. J Biol Chem 275:41243–41250

    Article  CAS  PubMed  Google Scholar 

  • Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137

    Article  CAS  PubMed  Google Scholar 

  • Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90:369–379

    Article  CAS  PubMed  Google Scholar 

  • Rousselet N, Mills L, Jean D, Tellez C, Bar-Eli M, Frade R (2004) Inhibition of tumorigenicity and metastasis of human melanoma cells by anti-cathepsin L single chain variable fragment. Cancer Res 64:146–151

    Article  CAS  PubMed  Google Scholar 

  • Runger TM, Quintanilla-Dieck MJ, Bhawan J (2007) Role of cathepsin K in the turnover of the dermal extracellular matrix during scar formation. J Invest Dermatol 127:293–297

    Article  PubMed  CAS  Google Scholar 

  • Schlecker E, Fiegler N, Arnold A, Altevogt P, Rose-John S, Moldenhauer G, Sucker A, Paschen A, von Strandmann EP, Textor S, Cerwenka A (2014) Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res 74:3429–3440

    Article  CAS  PubMed  Google Scholar 

  • Schlondorff J, Blobel CP (1999) Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 112(Pt 21):3603–3617

    CAS  PubMed  Google Scholar 

  • Schonefuss A, Abety AN, Zamek J, Mauch C, Zigrino P (2012) Role of ADAM-15 in wound healing and melanoma development. Exp Dermatol 21:437–442

    Article  PubMed  CAS  Google Scholar 

  • Seftor RE, Seftor EA, Koshikawa N, Meltzer PS, Gardner LM, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJ (2001) Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 61:6322–6327

    CAS  PubMed  Google Scholar 

  • Shapiro MJ, Weiss EJ, Faruqi TR, Coughlin SR (2000) Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem 275:25216–25221

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RL, Duquette JG, Roses DF, Nunes I, Harris MN, Kamino H, Wilson EL, Rifkin DB (1996) Induction of primary cutaneous melanocytic neoplasms in urokinase-type plasminogen activator (uPA)-deficient and wild-type mice: cellular blue nevi invade but do not progress to malignant melanoma in uPA-deficient animals. Cancer Res 56:3597–3604

    CAS  PubMed  Google Scholar 

  • Shaverdashvili K, Zhang K, Osman I, Honda K, Jobava R, Bedogni B (2015) MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility. Oncotarget 6(32):33512–22

    PubMed  PubMed Central  Google Scholar 

  • Tang BL (2001) ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 33:33–44

    Article  CAS  PubMed  Google Scholar 

  • Tatti O, Arjama M, Ranki A, Weiss SJ, Keski-Oja J, Lehti K (2011) Membrane-type-3 matrix metalloproteinase (MT3-MMP) functions as a matrix composition-dependent effector of melanoma cell invasion. PLoS One 6:e28325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatti O, Gucciardo E, Pekkonen P, Holopainen T, Louhimo R, Repo P, Maliniemi P, Lohi J, Rantanen V, Hautaniemi S, Alitalo K, Ranki A, Ojala PM, Keski-Oja J, Lehti K (2015) MMP16 Mediates a Proteolytic Switch to Promote Cell-Cell Adhesion, Collagen Alignment, and Lymphatic Invasion in Melanoma. Cancer Res 75:2083–2094

    Article  CAS  PubMed  Google Scholar 

  • Ungerer C, Doberstein K, Burger C, Hardt K, Boehncke WH, Bohm B, Pfeilschifter J, Dummer R, Mihic-Probst D, Gutwein P (2010) ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma. Biochem Biophys Res Commun 401:363–369

    Article  CAS  PubMed  Google Scholar 

  • Uria JA, Stahle-Backdahl M, Seiki M, Fueyo A, Lopez-Otin C (1997) Regulation of collagenase-3 expression in human breast carcinomas is mediated by stromal-epithelial cell interactions. Cancer Res 57:4882–4888

    CAS  PubMed  Google Scholar 

  • Wandel E, Grasshoff A, Mittag M, Haustein UF, Saalbach A (2000) Fibroblasts surrounding melanoma express elevated levels of matrix metalloproteinase-1 (MMP-1) and intercellular adhesion molecule-1 (ICAM-1) in vitro. Exp Dermatol 9:34–41

    Article  CAS  PubMed  Google Scholar 

  • Wang LE, Huang YJ, Yin M, Gershenwald JE, Prieto VG, Lee JE, Duvic M, Grimm EA, Wei Q (2011) Promoter polymorphisms in matrix metallopeptidase 1 and risk of cutaneous melanoma. Eur J Cancer 47:107–115

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Moncada-Pazos A, Cal S, Soria-Valles C, Gartner J, Rudloff U, Lin JC, Rosenberg SA, Lopez-Otin C, Samuels Y (2011) Analysis of the disintegrin-metalloproteinases family reveals ADAM29 and ADAM7 are often mutated in melanoma. Hum Mutat 32:E2148–E2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Prickett TD, Viloria CG, Molinolo A, Lin JC, Cardenas-Navia I, Cruz P, Rosenberg SA, Davies MA, Gershenwald JE, Lopez-Otin C, Samuels Y (2010) Mutational and functional analysis reveals ADAMTS18 metalloproteinase as a novel driver in melanoma. Mole Cancer Research MCR 8:1513–1525

    Article  CAS  Google Scholar 

  • Weskamp G, Mendelson K, Swendeman S, Le Gall S, Ma Y, Lyman S, Hinoki A, Eguchi S, Guaiquil V, Horiuchi K, Blobel CP (2010) Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ Res 106:932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin M, Soikkeli J, Jahkola T, Virolainen S, Saksela O, Holtta E (2012) TGF-beta signaling, activated stromal fibroblasts, and cysteine cathepsins B and L drive the invasive growth of human melanoma cells. Am J Pathol 181:2202–2216

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Prassas I, Dimitromanolakis A, Diamandis EP (2015) Novel Biological Substrates of Human Kallikrein 7 Identified through Degradomics. J Biol Chem 290:17762–17775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Sun B, Li Y, Liu Y, Zhang D, Wang X, Gu Q, Zhao J, Dong X, Liu Z, Che N (2015) Dual effects of collagenase-3 on melanoma: metastasis promotion and disruption of vasculogenic mimicry. Oncotarget 6:8890–8899

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Graham R, Russell G, Croucher PI (2001) MDC-9 (ADAM-9/Meltrin gamma) functions as an adhesion molecule by binding the alpha(v)beta(5) integrin. Biochem Biophys Res Commun 280:574–580

    Article  CAS  PubMed  Google Scholar 

  • Zigrino P, Kuhn I, Bauerle T, Zamek J, Fox JW, Neumann S, Licht A, Schorpp-Kistner M, Angel P, Mauch C (2009) Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J Invest Dermatol 129:2686–2693

    Article  CAS  PubMed  Google Scholar 

  • Zigrino P, Mauch C, Fox JW, Nischt R (2005) Adam-9 expression and regulation in human skin melanoma and melanoma cell lines. Int J Cancer J Int Du Cancer 116:853–859

    Article  CAS  Google Scholar 

  • Zigrino P, Nischt R, Mauch C (2011) The disintegrin-like and cysteine-rich domains of ADAM-9 mediate interactions between melanoma cells and fibroblasts. J Biol Chem 286:6801–6807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft through the SFB829 and by the Melanoma Research Network of the Deutsche Krebshilfe (Melanoma Verbund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Zigrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zigrino, P., Mauch, C. (2017). Proteases in Melanoma. In: Bosserhoff, A. (eds) Melanoma Development. Springer, Cham. https://doi.org/10.1007/978-3-319-41319-8_8

Download citation

Publish with us

Policies and ethics