Skip to main content

MiRNAs in Malignant Melanoma

  • Chapter
  • First Online:
  • 1070 Accesses

Abstract

MicroRNAs (miRNAs) represent a class of small noncoding RNAs, first described in the nematode Caenorhabditis elegans. In 1993, the labs of Victor Ambros (Lee et al. Cell 75:843–854, 1993) and Gary Ruvkun (Wightman et al. Cell 75:855–862, 1993) discovered lin-4, the first member of the inexorably growing family of miRNAs. Interestingly, it was not until the year 2000 that Reinhart and colleagues detected a second miRNA species – let-7 (Reinhart et al. Nature 2000;403:901–906). The finding that the sequence of let-7 was conserved in a large variety of Metazoens from Drosophila to humans (in contrast to lin-4, which is exclusively expressed in Caenorhabditis; Pasquinelli et al. Nature 408:86–89, 2000; Slack et al. Mol Cell 2000;5:659–669, 2000) fueled miRNA research and revealed that this class of molecules is involved in the regulation of gene expression at a posttranscriptional level in presumably every multicellular organism.

To date, more than 1800 distinct miRNA species have been identified in the human genome (www.miRNA.org; Kozomara and Griffiths-Jones 42(Database issue):D68–73, 2014). Those are estimated to regulate the expression of as much as 60 % of all human transcripts (Friedman et al. Genome Res 2009;19:92–105, 2009). MiRNAs are demonstrably involved in the physiological regulation of multiple cellular processes, such as proliferation, apoptosis, and differentiation. As a consequence, abnormalities in miRNA activity were found to contribute to the pathogenesis and progression of various types of human cancers (reviewed by Mirnezami et al. Eur J Surg Oncol 35:339–347, 2009; Visone and Croce Am J Pathol 2009;174:1131–1138, 2009), including malignant melanoma (reviewed by Mione and Bosserhoff Pigment Cell Melanoma Res 2015;28:340–354).

Maria Mione, Janika Liebig and Leonel Munoz contributed equally

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50:6757–6764

    CAS  PubMed  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arts N, Cané S, Hennequart M, Lamy J, Bommer G, Van den Eynde B, De Plaen E (2015) microRNA-155, induced by interleukin-1ß, represses the expression of microphthalmia-associated transcription factor (MITF-M) in melanoma cells. PLoS One 10:e0122517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA, Fullen DR, Johnson TM, Giordano TJ, Palanisamy N, Chinnaiyan AM (2012) Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget 3:1011–1025

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai J, Zhang Z, Li X, Liu H (2015) MicroRNA-365 inhibits growth, invasion and metastasis of malignant melanoma by targeting NRP1 expression. Cancer Biomark 15:599–608

    Article  CAS  PubMed  Google Scholar 

  • Barnhill RL, Mihm MC Jr (1993) The histopathology of cutaneous malignant melanoma. Semin Diagn Pathol 10:47–75

    CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JC, Terheyden P, Kampgen E, Wagner S, Neumann C, Schadendorf D, Steinmann A, Wittenberg G, Lieb W, Brocker EB (2002) Treatment of disseminated ocular melanoma with sequential fotemustine, interferon alpha, and interleukin 2. Br J Cancer 87:840–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedogni B, Powell MB (2009) Hypoxia, melanocytes and melanoma—survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 22:166–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006a) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Izaurralde E (2006b) MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol 71(523–30):523–530

    Article  CAS  PubMed  Google Scholar 

  • Bell RE, Levy C (2011) The three M’s: melanoma, microphthalmia-associated transcription factor and microRNA. Pigment Cell Melanoma Res 24:1088–1106

    Article  CAS  PubMed  Google Scholar 

  • Bell RE, Khaled M, Netanely D, Schubert S, Golan T, Buxbaum A, Janas MM, Postolsky B, Goldberg MS, Shamir R, Levy C (2014) Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J Invest Dermatol 134:441–451

    Article  CAS  PubMed  Google Scholar 

  • Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, Erickson PF, Shellman YG, Robinson WA (2008) MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 68:1362–1368

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28:328–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya A, Schmitz U, Wolkenhauer O, Schonherr M, Raatz Y, Kunz M (2013) Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma. Oncogene 32:3175–3183

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  CAS  PubMed  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z, Liu CG, Reinhold W, Lorenzi PL, Kaldjian EP, Croce CM, Weinstein JN, Sadee W (2007) MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 6:1483–1491

    Article  CAS  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    Article  CAS  PubMed  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  CAS  PubMed  Google Scholar 

  • Box NF, Terzian T (2008) The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res 21:525–533

    Article  CAS  PubMed  Google Scholar 

  • Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME (2010) The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 17:F19–F36

    Article  CAS  PubMed  Google Scholar 

  • Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, Aoude LG, Dutton-Regester K, Cook AL, Sturm RA, Hayward NK (2011) Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res 24:525–537

    Article  CAS  PubMed  Google Scholar 

  • Bracken CP, Gregory PA, Khew-Goodall Y, Goodall GJ (2009) The role of microRNAs in metastasis and epithelial-mesenchymal transition. Cell Mol Life Sci 66:1682–1699

    Article  CAS  PubMed  Google Scholar 

  • Braig S, Mueller DW, Rothhammer T, Bosserhoff AK (2010) MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci 67:3535–3548

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bu P, Yang P (2014) MicroRNA-203 inhibits malignant melanoma cell migration by targeting versican. Exp Ther Med 8:309–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannell IG, Kong YW, Bushell M (2008) How do microRNAs regulate gene expression? Biochem Soc Trans 36:1224–1231

    Article  CAS  PubMed  Google Scholar 

  • Caramuta S, Egyhazi S, Rodolfo M, Witten D, Hansson J, Larsson C, Lui WO (2010) MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol 130:2062–2070

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang X, Sun Y, Han S, Zhu W, Zhang H, Lian S (2015) MiR-203 inhibits melanoma invasive and proliferative abilities by targeting the polycomb group gene BMI1. Biochem Biophys Res Commun 456:361–366

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Grosshans H (2009) Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461:546–549

    Article  CAS  PubMed  Google Scholar 

  • Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Feilotter HE, Pare GC, Zhang X, Pemberton JG, Garady C, Lai D, Yang X, Tron VA (2010) MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol 176:2520–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang X, Lentz C, Abi-Daoud M, Pare GC, Yang X, Feilotter HE, Tron VA (2011) miR-193b Regulates Mcl-1 in Melanoma. Am J Pathol 179:2162–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Abi-Daoud M, Wang A, Yang X, Zhang X, Feilotter HE, Tron VA (2013) Stathmin 1 is a potential novel oncogene in melanoma. Oncogene 32:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 111:14888–14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciuffreda L, Di Sanza C, Incani UC, Eramo A, Desideri M, Biagioni F, Passeri D, Falcone I, Sette G, Bergamo P (2012) The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. J Mol Med 90:667–679

    Article  CAS  PubMed  Google Scholar 

  • Cohen R, Greenberg E, Nemlich Y, Schachter J, Markel G (2015) miR-17 regulates melanoma cell motility by inhibiting the translation of ETV1. Oncotarget 6:19006–19016

    Article  PubMed  PubMed Central  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438

    Article  CAS  PubMed  Google Scholar 

  • Couts KL, Anderson EM, Gross MM, Sullivan K, Ahn NG (2013) Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene 32:1959–1970

    Article  CAS  PubMed  Google Scholar 

  • Cruz J, Reis-Filho JS, Silva P, Lopes JM (2003) Expression of c-met tyrosine kinase receptor is biologically and prognostically relevant for primary cutaneous malignant melanomas. Oncology 65:72–82

    Article  CAS  PubMed  Google Scholar 

  • Danen EH, Ten Berge PJ, Van Muijen GN, Van’t Hof-Grootenboer a, Brocker EB, Ruiter DJ (1994) Emergence of alpha 5 beta 1 fibronectin- and alpha v beta 3 vitronectin-receptor expression in melanocytic tumour progression. Histopathology 24:249–256

    Article  CAS  PubMed  Google Scholar 

  • Danen EH, Jansen KF, Van Kraats AA, Cornelissen IM, Ruiter DJ, Van Muijen GN (1995) Alpha v-integrins in human melanoma: gain of alpha v beta 3 and loss of alpha v beta 5 are related to tumor progression in situ but not to metastatic capacity of cell lines in nude mice. Int J Cancer 61:491–496

    Article  CAS  PubMed  Google Scholar 

  • Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M (2011) miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 286:16606–16614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar AA, Majid S, Rittsteuer C, de Semir D, Bezrookove V, Tong S, Nosrati M, Sagebiel R, Miller JR 3rd, Kashani-Sabet M (2013) The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst 105:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das SK, Sokhi UK, Bhutia SK, Azab B, Su ZZ, Sarkar D, Fisher PB (2010) Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proc Natl Acad Sci U S A 107:11948–11953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BN, Hata A (2009) Regulation of MicroRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Luca T, Pelosi A, Trisciuoglio D, D’Aguanno S, Desideri M, Farini V, Di Martile M, Bellei B, Tupone MG, Candiloro A, Regazzo G, Rizzo MG (2015) Del Bufalo D (2015) miR-211 and MITF Modulation by Bcl-2 Protein in Melanoma Cells. Mol Carcinog. doi:10.1002/mc.22437

    PubMed  Google Scholar 

  • Deng Y, Deng H, Bi F, Liu J, Bemis LT, Norris D, Wang XJ, Zhang Q (2011) MicroRNA-137 targets carboxyl-terminal binding protein 1 in melanoma cell lines. Int J Biol Sci 7:133–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Dietrich P, Bosserhoff AK (2015) Modifying microRNAs – another piece of the melanoma puzzle. Pigment Cell Melanoma Res 28:488–489

    Article  PubMed  Google Scholar 

  • Ding N, Wang S, Yang Q, Li Y, Cheng H, Wang J, Wang D, Deng Y, Yang Y, Hu S, Zhao H, Fang X (2015) Deep sequencing analysis of microRNA expression in human melanocyte and melanoma cell lines. Gene 572:135–145

    Article  CAS  PubMed  Google Scholar 

  • Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dynoodt P, Mestdagh P, Van Peer G, Vandesompele J, Goossens K, Peelman LJ, Geusens B, Speeckaert RM, Lambert JL, Van Gele MJ (2013a) Identification of miR-145 as a key regulator of the pigmentary process. J Invest Dermatol 133:201–209

    Article  CAS  PubMed  Google Scholar 

  • Dynoodt P, Speeckaert R, De Wever O, Chevolet I, Brochez L, Lambert J, Van Gele M (2013b) miR-145 overexpression suppresses the migration and invasion of metastatic melanoma cells. Int J Oncol 42:1443–1451

    CAS  PubMed  Google Scholar 

  • El Hajj P, Gilot D, Migault M, Theunis A, van Kempen LC, Salés F, Fayyad-Kazan H, Badran B, Larsimont D, Awada A, Bachelot L, Galibert MD, Ghanem G, Journe F (2015) SNPs at miR-155 binding sites of TYRP1 explain discrepancy between mRNA and protein and refine TYRP1 prognostic value in melanoma. Br J Cancer 113:91–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elcheva I, Tarapore RS, Bhatia N, Spiegelman VS (2008) Overexpression of mRNA-binding protein CRD-BP in malignant melanomas. Oncogene 27:5069–5074

    Article  CAS  PubMed  Google Scholar 

  • Elson-Schwab I, Lorentzen A and Marshall CJ (2010) MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS One 4;5(10). pii: e13176.

    Google Scholar 

  • Errico MC, Felicetti F, Bottero L, Mattia G, Boe A, Felli N, Petrini M, Bellenghi M, Pandha HS, Calvaruso M, Tripodo C, Colombo MP, Morgan R, Care A (2013) The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway. Int J Cancer 133:879–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esau CC, Monia BP (2007) Therapeutic potential for microRNAs. Adv Drug Deliv Rev 59:101–114

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M, Felli N, Mattia G, Petrini M, Colombo MP, Peschle C, Care A (2008a) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68:2745–2754

    Article  CAS  PubMed  Google Scholar 

  • Felicetti F, Errico MC, Segnalini P, Mattia G, Care A (2008b) MicroRNA-221 and −222 pathway controls melanoma progression. Expert Rev Anticancer Ther 8:1759–1765

    Article  CAS  PubMed  Google Scholar 

  • Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102:18081–18086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felli N, Felicetti F, Lustri AM, Errico MC, Bottero L, Cannistraci A, De Feo A, Petrini M, Pedini F, Biffoni M, Alvino E, Negrini M, Ferracin M, Mattia G, Care A (2013) miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. PLoS One 8:e56824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felli N, Errico MC, Pedini F, Petrini M, Puglisi R, Bellenghi M, Boe A, Felicetti F, Mattia G, De Feo A, Bottero L, Tripodo C, Carè A (2016) AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene 35(23):3016–3026

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Forloni M, Dogra SK, Dong Y, Conte D Jr, Ou J, Zhu LJ, Deng A, Mahalingam M, Green MR, Wajapeyee N (2014) miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. Elife 3:e01460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Meng Z, Liang W, Tian Y, Wang X, Han W, Lou G, Wang X, Lou F, Yen Y, Yu H, Jove R, Huang W (2014) miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene 33:4296–4306

    Article  CAS  PubMed  Google Scholar 

  • Galore-Haskel G, Nemlich Y, Greenberg E, Ashkenazi S, Hakim M, Itzhaki O, Shoshani N, Shapira-Fromer R, Ben-Ami E, Ofek E, Anafi L, Besser MJ, Schachter J, Markel G (2015) A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme. Oncotarget 6:28999–29015

    PubMed  PubMed Central  Google Scholar 

  • Gambarotta G, Boccaccio C, Giordano S, Ando M, Stella MC, Comoglio PM (1996) Ets up-regulates MET transcription. Oncogene 13:1911–1917

    CAS  PubMed  Google Scholar 

  • Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, Gasparini P, Gonelli A, Costinean S, Acunzo M, Condorelli G, Croce CM (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16:498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gartel AL, Kandel ES (2008) miRNAs: little known mediators of oncogenesis. Semin Cancer Biol 18:103–110

    Article  CAS  PubMed  Google Scholar 

  • Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468

    Article  CAS  PubMed  Google Scholar 

  • Gaziel-Sovran A, Segura MF, Di Micco R, Collins MK, Hanniford D, Vega-Saenz de Miera E, Rakus JF, Dankert JF, Shang S, Kerbel RS, Bhardwaj N, Shao Y, Darvishian F, Zavadil J, Erlebacher A, Mahal LK, Osman I, Hernando E (2011) miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell 20:104–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgantas RW, Streicher K, Luo X, Zhu W, Liu Z, Brohawn P, Morehouse C, Higgs BW, Richman L, Jallal B (2013) Effect of microRNA-206 on G1 arrest by inhibition of CDK4, cyclin C, and cyclin D in melanoma cells. J Clin Oncol 31:e20047

    Google Scholar 

  • Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD (2010) Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16:43–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles KM, Brown RA, Epis MR, Kalinowski FC, Leedman PJ (2013) miRNA-7-5p inhibits melanoma cell migration and invasion. Biochem Biophys Res Commun 430:706–710

    Article  CAS  PubMed  Google Scholar 

  • Gillanders E, Juo SH, Holland EA, Jones M, Nancarrow D, Freas-Lutz D, Sood R, Park N, Faruque M, Markey C, Kefford RF, Palmer J, Bergman W, Bishop DT, Tucker MA, Bressac-de Paillerets B, Hansson J, Stark M, Gruis N, Bishop JN, Goldstein AM, Bailey-Wilson JE, Mann GJ, Hayward N, Trent J (2003) Localization of a novel melanoma susceptibility locus to 1p22. Am J Hum Genet 73:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  CAS  PubMed  Google Scholar 

  • Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glud M, Klausen M, Gniadecki R, Rossing M, Hastrup N, Nielsen FC, Drzewiecki KT (2009) MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling. J Invest Dermatol 129:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Glud M, Rossing M, Hother C, Holst L, Hastrup N, Nielsen FC, Gniadecki R, Drzewiecki KT (2010) Downregulation of miR-125b in metastatic cutaneous malignant melanoma. Melanoma Res 20:479–484

    Article  CAS  PubMed  Google Scholar 

  • Golan T, Messer AR, Amitai-Lange A, Melamed Z, Ohana R, Bell RE, Kapitansky O, Lerman G, Greenberger S, Khaled M (2015) Interactions of melanoma cells with distal keratinocytes trigger metastasis via notch signaling inhibition of MITF. Mol Cell 59:664–676

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Tarapore RS, Poenitzsch Strong AM, TeSlaa JJ, Grinblat Y, Setaluri V, Spiegelman VS (2015) MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor (MITF) mRNA is inhibited by coding region determinant-binding protein (CRD-BP). J Biol Chem 290:384–395

    Article  CAS  PubMed  Google Scholar 

  • Greenberg E, Hershkovitz L, Itzhaki O, Hajdu S, Nemlich Y, Ortenberg R, Gefen N, Edry L, Modai S, Keisari Y, Besser MJ, Schachter J, Shomron N, Markel G (2011) Regulation of cancer aggressive features in melanoma cells by microRNAs. PLoS One 6:e18936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg E, Hajdu S, Nemlich Y, Cohen R, Itzhaki O, Jacob-Hirsch J, Besser MJ, Schachter J, Markel G (2014) Differential regulation of aggressive features in melanoma cells by members of the miR-17-92 complex. Open Biol 4:140030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed  Google Scholar 

  • Grignol V, Fairchild ET, Zimmerer JM, Lesinski GB, Walker MJ, Magro CM, Kacher JE, Karpa VI, Clark J, Nuovo G, Lehman A, Volinia S, Agnese DM, Croce CM, Carson WE 3rd (2011) miR-21 and miR-155 are associated with mitotic activity and lesion depth of borderline melanocytic lesions. Br J Cancer 105:1023–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Zhang JF, Wang WM, Cheung FW, Lu YF, Ng CF, Kung HF, Liu WK (2014) MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression. RNA Biol 11:732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haflidadottir BS, Bergsteinsdottir K, Praetorius C, Steingrimsson E (2010) miR-148 regulates Mitf in melanoma cells. PLoS One 5:e11574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  CAS  PubMed  Google Scholar 

  • Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH, Yang WY, Haussler D, Blelloch R, Kim VN (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanniford D, Zhong J, Koetz L, Gaziel-Sovran A, Lackaye DJ, Shang S, Pavlick A, Shapiro R, Berman R, Darvishian F, Shao Y, Osman I, Hernando E (2015) A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis. Clin Cancer Res 21:4903–4912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao S, Luo C, Abukiwan A, Wang G, He J, Huang L, Weber CE, Lv N, Xiao X, Eichmuller SB, He D (2015) miR-137 inhibits proliferation of melanoma cells by targeting PAK2. Exp Dermatol 24:947–952

    Article  CAS  PubMed  Google Scholar 

  • Hausser J, Zavolan M (2014) Identification and consequences of miRNA–target interactions — beyond repression of gene expression. Nat Rev Genet 15:599–612

    Article  CAS  PubMed  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle CA (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 102:19075–19080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann A, Zhao F, Pechlivanis S, Eberle J, Steinle A, Diederichs S, Schadendorf D, Paschen A (2012) Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res 72:460–471

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199

    Article  CAS  PubMed  Google Scholar 

  • Ho JJ, Marsden PA (2014) Competition and collaboration between RNA-binding proteins and microRNAs. Wiley Interdiscip Rev RNA 5:69–86

    Article  CAS  PubMed  Google Scholar 

  • Holst LM, Kaczkowski B, Glud M, Futoma-Kazmierczak E, Hansen LF, Gniadecki R (2011) The microRNA molecular signature of atypic and common acquired melanocytic nevi: differential expression of miR-125b and let-7c. Exp Dermatol 20:278–280

    Article  CAS  PubMed  Google Scholar 

  • Howell PM, Li X, Riker AI, Xi Y (2010) MicroRNA in melanoma. Ochsner J 10:83–92

    PubMed  PubMed Central  Google Scholar 

  • Hsu MY, Rovinsky S, Penmatcha S, Herlyn M, Muirhead D (2005) Bone morphogenetic proteins in melanoma: angel or devil? Cancer Metastasis Rev 24:251–263

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35:856–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Le QT, Giaccia AJ (2010) MiR-210—micromanager of the hypoxia pathway. Trends Mol Med 16:230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Yi X, Jian Z, Wei C, Li S, Cai C, Zhang P, Li K, Guo S, Liu L, Shi Q, Gao T, Li C (2013) A single-nucleotide polymorphism of miR-196a-2 and vitiligo: an association study and functional analysis in a Han Chinese population. Pigment Cell Melanoma Res 26(3):338–347

    Article  CAS  PubMed  Google Scholar 

  • Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD, Nana-Sinkam SP, Jarjoura D, Marsh CB (2008) Detection of microRNA Expression in Human Peripheral Blood Microvesicles. PLoS One 3:e3694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  CAS  PubMed  Google Scholar 

  • Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100

    Article  CAS  PubMed  Google Scholar 

  • Hwang HW, Baxter LL, Loftus SK, Cronin JC, Trivedi NS, Borate B, Pavan WJ (2014) Distinct microRNA expression signatures are associated with melanoma subtypes and are regulated by HIF1A. Pigment Cell Melanoma Res 27:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igoucheva O, Alexeev V (2009) MicroRNA-dependent regulation of cKit in cutaneous melanoma. Biochem Biophys Res Commun 379:790–794

    Article  CAS  PubMed  Google Scholar 

  • Inada T, Fukushima S, Murai M, Jinnin M, Miyashita A, Nakahara S, Yamashita J, Aoi J, Masuguchi S, Ihn H (2015) Hair shaft miRNA-221 levels as a new tumor marker of malignant melanoma. J Dermatol 42:198–201

    Article  CAS  PubMed  Google Scholar 

  • Ito Y (2004) Oncogenic potential of the RUNX gene family: “overview”. Oncogene 23:4198–4208

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Bond JA, Prat M, Comoglio PM, Wynford-Thomas D (1997) Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 14:2417–2423

    Article  CAS  PubMed  Google Scholar 

  • Jafari N, Dogaheh HP, Bohlooli S, Oyong GG, Shirzad Z, Alibeiki F, Asl SH, Zargar SJ (2013) Expression levels of microRNA machinery components Drosha, Dicer and DGCR8 in human (AGS, HepG2, and KEYSE-30) cancer cell lines. Int J Clin Exp Med 6:269–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jafarnejad SM, Sjoestroem C, Martinka M, Li G (2013) Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma. Mod Pathol 26:902–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2005) Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci U S A 102:1454–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayawardana K, Schramm SJ, Tembe V, Mueller S, Thompson JF, Scolyer RA, Mann GJ, Yang JY (2015) Identification, review and systematic cross-validation of microRNA prognostic signatures in metastatic melanoma. J Invest Dermatol. doi: 10.1038/jid.2015.355

    Google Scholar 

  • Jian Q, An Q, Zhu D, Hui K, Liu Y, Chi S, Li C (2014) MicroRNA 340 Is involved in UVB-induced dendrite formation through the regulation of RhoA expression in melanocytes. Mol Cell Biol 34:3407–3420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang L, Lv X, Li J, Li J, Li X, Li W, Li Y (2012) The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochem 114:582–588

    Article  CAS  PubMed  Google Scholar 

  • Jiang CC, Croft A, Tseng HY, Guo ST, Jin L, Hersey P, Zhang XD (2014) Repression of microRNA-768-3p by MEK/ERK signalling contributes to enhanced mRNA translation in human melanoma. Oncogene 33:2577–2588

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Hu WL, Jiang CC, Wang JX, Han CC, Chu P, Zhang LJ, Thorne RF, Wilmott J, Scolyer RA, Hersey P, Zhang XD, Wu M (2011) MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci U S A 108:15840–15845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, Wolf DA, Mizgerd JP (2009) Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11:1157–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jukic DM, Rao UN, Kelly L, Skaf JS, Drogowski LM, Kirkwood JM, Panelli MC (2010) MicroRNA profiling analysis of differences between the melanoma of young adults and older adults. J Transl Med 8:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK (2013) MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 32:2984–2991

    Article  CAS  PubMed  Google Scholar 

  • Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, Krauthammer M, Halaban R, Provero P, Adams DJ, Tuveson DA, Pandolfi PP (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T, Suzuki T (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23:433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kim VN (2004) MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol 14:156–159

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Bin BH, Kim J, Dong SE, Park PJ, Choi H, Kim BJ, Yu SJ, Kang H, Kang HH, Cho EG, Lee TR (2014a) Novel inhibitory function of miR-125b in melanogenesis. Pigment Cell Melanoma Res 27:140–144

    Article  CAS  PubMed  Google Scholar 

  • Kim NH, Choi SH, Kim CH, Lee CH, Lee TR, Lee AY (2014b) Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J Invest Dermatol 134:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitago M, Martinez SR, Nakamura T, Sim MS, Hoon DS (2009) Regulation of RUNX3 tumor suppressor gene expression in cutaneous melanoma. Clin Cancer Res 15:2988–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll S, Furst K, Kowtharapu B, Schmitz U, Marquardt S, Wolkenhauer O, Martin H, Putzer BM (2014) E2F1 induces miR-224/452 expression to drive EMT through TXNIP downregulation. EMBO Rep 15:1315–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong YW, Cannell IG, de Moor CH, Hill K, Garside PG, Hamilton TL, Meijer HA, Dobbyn HC, Stoneley M, Spriggs KA, Willis AE, Bushell M (2008) The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci U S A 105:8866–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kourtidis A, Ngok SP, Pulimeno P, Feathers RW, Carpio LR, Baker TR, Carr JM, Yan IK, Borges S, Perez EA, Storz P, Copland JA, Patel T, Thompson EA, Citi S, Anastasiadis PZ (2015) Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120 catenin activity. Nat Cell Biol 17:1145–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68:2094–2105

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Kozubek J, Ma Z, Fleming E, Duggan T, Wu R, Shin DG, Dadras SS (2013) In-depth characterization of microRNA transcriptome in melanoma. PLoS One 8:e72699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  • Kuphal S, Winklmeier A, Warnecke C, Bosserhoff AK (2010) Constitutive HIF-1 activity in malignant melanoma. Eur J Cancer 46:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y, Kim Y, Eom S, Kim M, Park D, Kim H, Noh K, Lee H, Lee YS, Choe J, Kim YM, Jeoung D (2015) MicroRNA-26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. J Biol Chem 290:14245–14266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167

    Article  CAS  PubMed  Google Scholar 

  • Lankenau M, Patel R, Markowitz J, Carson WE, de la Chapelle A, Eisfeld A-K (2014) Overexpression of miR-3151 leads to direct deregulation of the TP53 pathway and is associated with BRAF mutations in malignant melanoma. Cancer Res 74:4790

    Article  Google Scholar 

  • le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafre SA, Farace MG, Agami R (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Kim HK, Chung S, Kim KS, Dutta A (2005) Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 280:16635–16641

    Article  CAS  PubMed  Google Scholar 

  • Lei H, Wang H, Juan AH, Ruddle FH (2005) The identification of Hoxc8 target genes. Proc Natl Acad Sci U S A 102:2420–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei H, Juan AH, Kim MS, Ruddle FH (2006) Identification of a Hoxc8-regulated transcriptional network in mouse embryo fibroblast cells. Proc Natl Acad Sci U S A 103:10305–10309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leidinger P, Keller A, Borries A, Reichrath J, Rass K, Jager SU, Lenhof HP, Meese E (2010) High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer 10:262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levati L, Alvino E, Pagani E, Arcelli D, Caporaso P, Bondanza S, Di Leva G, Ferracin M, Volinia S, Bonmassar E, Croce CM, D’Atri S (2009) Altered expression of selected microRNAs in melanoma: antiproliferative and proapoptotic activity of miRNA-155. Int J Oncol 35:393–400

    CAS  PubMed  Google Scholar 

  • Levati L, Pagani E, Romani S, Castiglia D, Piccinni E, Covaciu C, Caporaso P, Bondanza S, Antonetti FR, Bonmassar E, Martelli F, Alvino E, D’Atri S (2011) MicroRNA-155 targets the SKI gene in human melanoma cell lines. Pigment Cell Melanoma Res 24:538–550

    Article  CAS  PubMed  Google Scholar 

  • Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S, Fletcher AL, Yokoyama S, Scott KL, Garraway LA, Song JS, Granter SR, Turley SJ, Fisher DE, Novina CD (2010a) Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell 40:841–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, Makino E, Lu J, Larue L, Beermann F, Chin L, Bosenberg M, Song JS, Fisher DE (2010b) Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell 141:994–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li N (2016) Low expression of Mir-137 predicts poor prognosis in cutaneous melanoma patients. Med Sci Monit 22:140–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K, Herlyn M (2001) Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 20:8125–8135

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang M, Chen H, Dong Z, Ganapathy V, Thangaraju M, Huang S (2010) Ratio of miR-196s to HOXC8 messenger RNA correlates with breast cancer cell migration and metastasis. Cancer Res 70:7894–7904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Li XJ, Qiao L, Shi F, Liu W, Li Y, Dang YP, Gu WJ, Wang XG, Liu W (2014a) miR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6. Exp Mol Med 46:e116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang L, Jia L, Duan Y, Li Y, Wang J, Bao L, Sha N (2014b) MicroRNA-143 targets Syndecan-1 to repress cell growth in melanoma. PLoS One 9:e94855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Zhou Y, Lian X, Tu Y (2015a) Down-regulation of tissue microRNA-126 was associated with poor prognosis in patients with cutaneous melanoma. Int J Clin Exp Med 8:4297–4301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin N, Zhou Y, Lian X, Tu Y (2015b) Expression of microRNA-106b and its clinical significance in cutaneous melanoma. Genet Mol Res 14:16379–16385

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Tetzlaff MT, Vanbelle P, Elder D, Feldman M, Tobias JW, Sepulveda AR, Xu X (2009) MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. Int J Clin Exp Pathol 2:519–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Kumar SM, Lu H, Liu A, Yang R, Pushparajan A, Guo W, Xu X (2012a) MicroRNA-9 up-regulates E-cadherin through inhibition of NF-kappaB1-Snail1 pathway in melanoma. J Pathol 226:61–72

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Tetzlaff MT, Cui R, Xu X (2012b) miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. Am J Pathol 181:1823–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Howell PM, Riker AI (2013) Up-regulation of miR-182 expression after epigenetic modulation of human melanoma cells. Ann Surg Oncol 20:1745–1752

    Article  PubMed  Google Scholar 

  • Liu SM, Lu J, Lee HC, Chung FH, Ma N (2014) miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget 5:9444–9459

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu P, Hu Y, Ma L, Du M, Xia L, Hu Z (2015a) miR-425 inhibits melanoma metastasis through repression of PI3K-Akt pathway by targeting IGF-1. Biomed Pharmacother 75:51–57

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Xie H, Luo C, Chen Z, Zhou X, Xia K, Chen X, Zhou M, Cao P, Cao K, Zhou J (2015b) Identification of FLOT2 as a novel target for microRNA-34a in melanoma. J Cancer Res Clin Oncol 141:993–1006

    Article  CAS  PubMed  Google Scholar 

  • Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Shi B, Wang J, Cao Q, Cui Q (2010) TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. BMC Bioinf 11:419

    Article  CAS  Google Scholar 

  • Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105:13556–13561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Merz PR, Chen Y, Dickes E, Pscherer A, Schadendorf D, Eichmüller SB (2013a) MiR-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2. Cancer Lett 341:240–247

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Tetteh PW, Merz PR, Dickes E, Abukiwan A, Hotz-Wagenblatt A, Holland-Cunz S, Sinnberg T, Schittek B, Schadendorf D, Diederichs S, Eichmuller SB (2013b) miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol 133:768–775

    Article  CAS  PubMed  Google Scholar 

  • Luthra R, Singh RR, Luthra MG, Li YX, Hannah C, Romans AM, Barkoh BA, Chen SS, Ensor J, Maru DM, Broaddus RR, Rashid A, Albarracin CT (2008) MicroRNA-196a targets annexin A1: a microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene 27:6667–6678

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Lui WO, Fire A, Dadras SS (2009) Profiling and discovery of novel miRNAs from formalin-fixed, paraffin-embedded melanoma and nodal specimens. J Mol Diagn 11:420–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Swede H, Cassarino D, Fleming E, Fire A, Dadras SS (2011) Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS One 6(6):e20494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 105:512–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margue C, Philippidou D, Reinsbach SE, Schmitt M, Behrmann I, Kreis S (2013) New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One 8:e73473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margue C, Reinsbach S, Philippidou D, Beaume N, Walters C, Schneider JG, Nashan D, Behrmann I, Kreis S (2015) Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget 6:12110–12127

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin del Campo SE, Latchana N, Levine KM, Grignol VP, Fairchild ET, Jaime-Ramirez AC, Dao TV, Karpa VI, Carson M, Ganju A, Chan AN, Carson WE 3rd (2015) MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS One 10:e0115919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maru DM, Singh RR, Hannah C, Albarracin CT, Li YX, Abraham R, Romans AM, Yao H, Luthra MG, Anandasabapathy S, Swisher SG, Hofstetter WL, Rashid A, Luthra R (2009) MicroRNA-196a is a potential marker of progression during Barrett’s metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus. Am J Pathol 174:1940–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascarenhas JB, Littlejohn EL, Wolsky RJ, Young KP, Nelson M, Salgia R, Lang D (2010) PAX3 and SOX10 activate MET receptor expression in melanoma. Pigment Cell Melanoma Res 23:225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattia G, Errico MC, Felicetti F, Petrini M, Bottero L, Tomasello L, Romania P, Boe A, Segnalini P, Di Virgilio A, Colombo MP, Care A (2011) Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma. Pigment Cell Melanoma Res 24:953–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazar J, DeYoung K, Khaitan D, Meister E, Almodovar A, Goydos J, Ray A, Perera RJ (2010) The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS One 5:e13779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazar J, Khaitan D, DeBlasio D, Zhong C, Govindarajan SS, Kopanathi S, Zhang S, Ray A, Perera RJ (2011) Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS One 6:e24922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazar J, Qi F, Lee B, Marchica J, Govindarajan S, Shelley J, Li J-L, Ray A, Perera RJ (2016) miR-211 functions as a metabolic switch in human melanoma cells. Mol Cell Biol 00762–15

    Google Scholar 

  • Melnik BC (2015) MiR-21: an environmental driver of malignant melanoma? J Transl Med 13:202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C, Ferreira B, Liu CG, Villanueva A, Capella G, Schwartz S Jr, Shiekhattar R, Esteller M (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer SU, Pfaffl MW, Ulbrich SE (2010) Normalization strategies for microRNA profiling experiments: a “normal” way to a hidden layer of complexity? Biotechnol Lett 32:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A, Comoglio PM, Giordano S (2008) MicroRNAs impair MET-mediated invasive growth. Cancer Res 68:10128–10136

    Article  CAS  PubMed  Google Scholar 

  • Mione M, Bosserhoff A (2015) MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res 28:340–354

    Article  CAS  PubMed  Google Scholar 

  • Mirnezami AH, Pickard K, Zhang L, Primrose JN, Packham G (2009) MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Eur J Surg Oncol 35:339–347

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar V, Tamasi V, Bakos B, Wiener Z, Falus A (2008) Changes in miRNA expression in solid tumors: an miRNA profiling in melanomas. Semin Cancer Biol 18:111–122

    Article  CAS  PubMed  Google Scholar 

  • Morrish F (2009) micRo-manageMeNT of MYC during hypoxia. Cell Cycle 8:2865

    Article  CAS  PubMed  Google Scholar 

  • Mueller DW, Bosserhoff AK (2009) Role of miRNAs in the progression of malignant melanoma. Br J Cancer 101:551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller DW, Bosserhoff AK (2010a) MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer 129(5):1064–1074

    Article  CAS  Google Scholar 

  • Mueller DW, Bosserhoff AK (2010b) The evolving concept of “melano-miRs”-microRNAs in melanomagenesis. Pigment Cell Melanoma Res 23:620–626

    Article  CAS  PubMed  Google Scholar 

  • Mueller DW, Rehli M, Bosserhoff AK (2009) miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol 129:1740–1751

    Article  CAS  PubMed  Google Scholar 

  • Muller DW, Bosserhoff AK (2008) Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene 27:6698–6706

    Article  CAS  PubMed  Google Scholar 

  • Natali PG, Nicotra MR, Di Renzo MF, Prat M, Bigotti A, Cavaliere R, Comoglio PM (1993) Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 68:746–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemlich Y, Greenberg E, Ortenberg R, Besser MJ, Barshack I, Jacob-Hirsch J, Jacoby E, Eyal E, Rivkin L, Prieto VG, Chakravarti N, Duncan LM, Kallenberg DM, Galun E, Bennett DC, Amariglio N, Bar-Eli M, Schachter J, Rechavi G, Markel G (2013) MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth. J Clin Invest 123:2703–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng D, Yang XR, Tucker MA, Goldstein AM (2008) Mutation screening of CHD5 in melanoma-prone families linked to 1p36 revealed no deleterious coding or splice site changes. BMC Res Notes 1:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen T, Kuo C, Nicholl MB, Sim MS, Turner RR, Morton DL, Hoon DS (2011) Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 6:388–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13:1894–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi S, Mori T, Hoshino Y, Yamada N, Nakagawa T, Sasaki N, Akao Y, Maruo K (2012a) Comparative study of anti-oncogenic microRNA-145 in canine and human malignant melanoma. J Vet Med Sci 74:1–8

    Article  CAS  PubMed  Google Scholar 

  • Noguchi S, Mori T, Otsuka Y, Yamada N, Yasui Y, Iwasaki J, Kumazaki M, Maruo K, Akao Y (2012b) Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem 287:11769–11777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi S, Kumazaki M, Mori T, Baba K, Okuda M, Mizuno T and Akao Y (2014) Analysis of microRNA-203 function in CREB/MITF/RAB27a pathway: comparison between canine and human melanoma cells. Vet Comp Oncol. doi: 10.1111/vco.12118.

    Google Scholar 

  • Noguchi S, Kumazaki M, Yasui Y, Mori T, Yamada N, Akao Y (2014b) MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b. J Invest Dermatol 134:461–469

    Article  CAS  PubMed  Google Scholar 

  • Noguchi S, Mori T, Nakagawa T, Itamoto K, Haraguchi T, Mizuno T (2015) DNA methylation contributes toward silencing of antioncogenic microRNA-203 in human and canine melanoma cells. Melanoma Res 25:390–398

    Article  CAS  PubMed  Google Scholar 

  • Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B, Mami-Chouaib F, Chouaib S (2012) Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res 72:4629–4641

    Article  CAS  PubMed  Google Scholar 

  • Nyholm AM, Lerche CM, Manfé V, Biskup E, Johansen P, Morling N, Thomsen BM, Glud M, Gniadecki R (2014) MiR-125b induces cellular senescence in malignant melanoma. BMC Dermatol 14:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohira T, Naohiro S, Nakayama Y, Osaki M, Okada F, Oshimura M, Kugoh H (2015) MiR-19b regulates hTERT mRNA expression through targeting PITX1 mRNA in melanoma cells. Sci Rep 5:8201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura K, Liu N, Lai EC (2009) Distinct mechanisms for microRNA strand selection by Drosophila argonautes. Mol Cell 36:431–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olive V, Jiang I, He L (2010) mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 42:1348–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono S, Oyama T, Lam S, Chong K, Foshag LJ, Hoon DS (2015) A direct plasma assay of circulating microRNA-210 of hypoxia can identify early systemic metastasis recurrence in melanoma patients. Oncotarget 6:7053–7064

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22:3172–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paroo Z, Ye X, Chen S, Liu Q (2009) Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139:112–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  • Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K, Tavazoie SF (2012) Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151:1068–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penna E, Orso F, Cimino D, Tenaglia E, Lembo A, Quaglino E, Poliseno L, Haimovic A, Osella-Abate S, De Pitta C, Pinatel E, Stadler MB, Provero P, Bernengo MG, Osman I, Taverna D (2011) microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J 30:1990–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penna E, Orso F, Cimino D, Vercellino I, Grassi E, Quaglino E, Turco E, Taverna D (2013) miR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. Cancer Res 73:4098–4111

    Article  CAS  PubMed  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  • Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 18:5–23

    Google Scholar 

  • Pfeffer SR, Grossmann KF, Cassidy PB, Yang CH, Fan M, Kopelovich L, Leachman SA, Pfeffer LM (2015) Detection of exosomal miRNAs in the plasma of melanoma patients. J Clin Med 4:2012–2027

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippidou D, Schmitt M, Moser D, Margue C, Nazarov PV, Muller A, Vallar L, Nashan D, Behrmann I, Kreis S (2010) Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res 70:4163–4173

    Article  CAS  PubMed  Google Scholar 

  • Piérard GE, Piérard-Franchimont C (2012) HOX gene aberrant expression in skin melanoma: a review. J Skin Cancer 2012:707260

    Article  PubMed  PubMed Central  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    Article  CAS  PubMed  Google Scholar 

  • Pinto R, Strippoli S, De Summa S, Albano A, Azzariti A, Guida G, Popescu O, Lorusso V, Guida M, Tommasi S (2015) MicroRNA expression in BRAF-mutated and wild- type metastatic melanoma and its correlation with response duration to BRAF inhibitors. Expert Opin Ther Targets 19:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Poetsch M, Dittberner T, Woenckhaus C (2003) Microsatellite analysis at 1p36.3 in malignant melanoma of the skin: fine mapping in search of a possible tumour suppressor gene region. Melanoma Res 13:29–33

    Article  CAS  PubMed  Google Scholar 

  • Poliseno L, Haimovic A, Segura MF, Hanniford D, Christos PJ, Darvishian F, Wang J, Shapiro RL, Pavlick AC, Berman RS, Hernando E, Zavadil J, Osman I (2012) Histology-specific microRNA alterations in melanoma. J Invest Dermatol 132:1860–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Katiyar SK (2014) Down-regulation of miRNA-106b inhibits growth of melanoma cells by promoting G1-phase cell cycle arrest and reactivation of p21/WAF1/Cip1 protein. Oncotarget 5:10636–10649

    Article  PubMed  PubMed Central  Google Scholar 

  • Puri N, Ahmed S, Janamanchi V, Tretiakova M, Zumba O, Krausz T, Jagadeeswaran R, Salgia R (2007) c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin Cancer Res 13:2246–2253

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Huang X, Zhou L, Zhang J (2014) Identification of differentially expressed microRNAs in metastatic melanoma using next-generation sequencing technology. Int J Mol Med 33:1117–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  • Reuland SN, Smith SM, Bemis LT, Goldstein NB, Almeida AR, Partyka KA, Marquez VE, Zhang Q, Norris DA, Shellman YG (2013) MicroRNA-26a is strongly downregulated in melanoma and induces cell death through repression of silencer of death domains (SODD). J Invest Dermatol 133:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Herrera PH, Ficarra E (2012) One decade of development and evolution of microRNA target prediction algorithms. Genomics Proteomics Bioinformatics 10:254–263

    Article  PubMed  Google Scholar 

  • Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben Ari A, Gilad S, Sion-Vardy N, Tobar A, Feinmesser M, Kharenko O, Nativ O, Nass D, Perelman M, Yosepovich A, Shalmon B, Polak-Charcon S, Fridman E, Avniel A, Bentwich I, Bentwich Z, Cohen D, Chajut A, Barshack I (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469

    Article  CAS  PubMed  Google Scholar 

  • Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK (2005) Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res 65:448–456

    CAS  PubMed  Google Scholar 

  • Rothhammer T, Braig S, Bosserhoff AK (2008) Bone morphogenetic proteins induce expression of metalloproteinases in melanoma cells and fibroblasts. Eur J Cancer 44:2526–2534

    Article  CAS  PubMed  Google Scholar 

  • Sakurai E, Maesawa C, Shibazaki M, Yasuhira S, Oikawa H, Sato M, Tsunoda K, Ishikawa Y, Watanabe A, Takahashi K, Akasaka T, Masuda T (2011) Downregulation of microRNA-211 is involved in expression of preferentially expressed antigen of melanoma in melanoma cells. Int J Oncol 39:665–672

    CAS  PubMed  Google Scholar 

  • Saleiban A, Faxalv L, Claesson K, Jonsson JI, Osman A (2014) miR-20b regulates expression of proteinase-activated receptor-1 (PAR-1) thrombin receptor in melanoma cells. Pigment Cell Melanoma Res 27:431–441

    Article  CAS  PubMed  Google Scholar 

  • Sand M, Skrygan M, Georgas D, Arenz C, Gambichler T, Sand D, Altmeyer P, Bechara FG (2012a) Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the NA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol Carcinog 51(11):916–922

    Article  CAS  PubMed  Google Scholar 

  • Sand M, Skrygan M, Georgas D, Sand D, Gambichler T, Altmeyer P, Bechara FG (2012b) The miRNA machinery in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases and benign melanocytic nevi. Cell Tissue Res 350:119–126

    Article  CAS  PubMed  Google Scholar 

  • Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, Altmeyer P, Bechara FG (2013) Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 351:85–98

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Leszczyniecka M, Kang DC, Lebedeva IV, Valerie K, Dhar S, Pandita TK, Fisher PB (2003) Down-regulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 278:24542–24551

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Park ES, Fisher PB (2006) Defining the mechanism by which IFN-beta dowregulates c-myc expression in human melanoma cells: pivotal role for human polynucleotide phosphorylase (hPNPaseold-35). Cell Death Differ 13:1541–1553

    Article  CAS  PubMed  Google Scholar 

  • Satzger I, Mattern A, Kuettler U, Weinspach D, Voelker B, Kapp A, Gutzmer R (2010) MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int J Cancer 126:2553–2562

    CAS  PubMed  Google Scholar 

  • Satzger I, Mattern A, Kuettler U, Weinspach D, Niebuhr M, Kapp A, Gutzmer R (2012) microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol 21:509–514

    Article  CAS  PubMed  Google Scholar 

  • Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H, Galle PR, Moehler M, Gockel I (2009) High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol 15:2089–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt MJ, Philippidou D, Reinsbach SE, Margue C, Wienecke-Baldacchino A, Nashan D, Behrmann I, Kreis S (2012) Interferon-gamma-induced activation of Signal Transducer and Activator of Transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun Signal 10:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18:549–557

    Article  CAS  PubMed  Google Scholar 

  • Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A, Bogunovic D, Polsky D, Wei J, Lee P, Belitskaya-Levy I, Bhardwaj N, Osman I, Hernando E (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A 106:1814–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura MF, Belitskaya-Levy I, Rose AE, Zakrzewski J, Gaziel A, Hanniford D, Darvishian F, Berman RS, Shapiro RL, Pavlick AC, Osman I, Hernando E (2010) Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res 16:1577–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah N, Sukumar S (2010) The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10:361–371

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Zhang W, Guo S, Jian Z, Li S, Li K, Ge R, Dai W, Wang G, Gao T, Li C (2016) Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo. Cell Death Differ 23(3):496–508

    Article  CAS  PubMed  Google Scholar 

  • Shoshan E, Mobley AK, Braeuer RR, Kamiya T, Huang L, Vasquez ME, Salameh A, Lee HJ, Kim SJ, Ivan C, Velazquez-Torres G, Nip KM, Zhu K, Brooks D, Jones SJ, Birol I, Mosqueda M, Wen YY, Eterovic AK, Sood AK, Hwu P, Gershenwald JE, Robertson AG, Calin GA, Markel G, Fidler IJ, Bar-Eli M (2015) Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol 17:311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669

    Article  CAS  PubMed  Google Scholar 

  • Slominski A, Wortsman J, Carlson AJ, Matsuoka LY, Balch CM, Mihm MC (2001) Malignant melanoma. Arch Pathol Lab Med 125:1295–1306

    CAS  PubMed  Google Scholar 

  • Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151

    Article  CAS  PubMed  Google Scholar 

  • Standart N, Jackson RJ (2007) MicroRNAs repress translation of m7G ppp-capped target mRNAs in vitro by inhibiting initiation and promoting deadenylation. Genes Dev 21:1975–1982

    Article  CAS  PubMed  Google Scholar 

  • Stark MS, Tyagi S, Nancarrow DJ, Boyle GM, Cook AL, Whiteman DC, Parsons PG, Schmidt C, Sturm RA, Hayward NK (2010) Characterization of the melanoma miRNAome by deep sequencing. PLoS One 5:e9685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stark MS, Bonazzi VF, Boyle GM, Palmer JM, Symmons J, Lanagan CM, Schmidt CW, Herington AC, Ballotti R, Pollock PM, Hayward NK (2015a) miR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget 6:17753–17763

    Article  PubMed  PubMed Central  Google Scholar 

  • Stark MS, Klein K, Weide B, Haydu LE, Pflugfelder A, Tang YH, Palmer JM, Whiteman DC, Scolyer RA, Mann GJ, Thompson JF, Long GV, Barbour AP, Soyer HP, Garbe C, Herington A, Pollock PM, Hayward NK (2015b) The prognostic and predictive value of melanoma-related microRNAs using tissue and serum: a MicroRNA expression analysis. EBioMedicine 2:671–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Streicher KL, Zhu W, Lehmann KP, Georgantas RW, Morehouse CA, Brohawn P, Carrasco RA, Xiao Z, Tice DA, Higgs BW, Richman L, Jallal B, Ranade K, Yao Y (2012) A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene 31:1558–1570

    Article  CAS  PubMed  Google Scholar 

  • Strong AMP, Setaluri V, Spiegelman VS (2014) microRNA-340 as a modulator of RAS–RAF–MAPK signaling in melanoma. Arch Biochem Biophys 563:118–124

    Article  CAS  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    Article  CAS  PubMed  Google Scholar 

  • Terzian T, Torchia EC, Dai D, Robinson SE, Murao K, Stiegmann RA, Gonzalez V, Boyle GM, Powell MB, Pollock P, Lozano G, Robinson WA, Roop DR, Box NF (2010) p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res 23(6):781–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696

    Article  PubMed Central  CAS  Google Scholar 

  • Tian R, Liu T, Qiao L, Gao M, Li J (2015) Decreased serum microRNA-206 level predicts unfavorable prognosis in patients with melanoma. Int J Clin Exp Pathol 8:3097–3103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG (2007) A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14:897–903

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    Article  CAS  PubMed  Google Scholar 

  • Triboulet R, Chang HM, Lapierre RJ, Gregory RI (2009) Post-transcriptional control of DGCR8 expression by the microprocessor. RNA 15:1005–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner MJ, Slack FJ (2009) Transcriptional control of microRNA expression in C. elegans: promoting better understanding. RNA Biol 6:49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  • Van Belle PA, Elenitsas R, Satyamoorthy K, Wolfe JT, Guerry D, Schuchter L, Van Belle TJ, Albelda S, Tahin P, Herlyn M, Elder DE (1999) Progression-related expression of beta3 integrin in melanomas and nevi. Hum Pathol 30:562–567

    Article  PubMed  Google Scholar 

  • van Kempen LC, van den Hurk K, Lazar V, Michiels S, Winnepenninckx V, Stas M, Spatz A, van den Oord JJ (2012) Loss of microRNA-200a and c, and microRNA-203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. Virchows Arch 461:441–448

    Article  CAS  PubMed  Google Scholar 

  • Van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110:496–507

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2008) Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 7:1545–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venza I, Visalli M, Beninati C, Benfatto S, Teti D, Venza M (2015) IL-10Ralpha expression is post-transcriptionally regulated by miR-15a, miR-185, and miR-211 in melanoma. BMC Med Genomics 8:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vergani E, Di Guardo L, Dugo M, Rigoletto S, Tragni G, Ruggeri R, Perrone F, Tamborini E, Gloghini A, Arienti F, Vergani B, Deho P, De Cecco L, Vallacchi V, Frati P, Shahaj E, Villa A, Santinami M, De Braud F, Rivoltini L, Rodolfo M (2016) Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget 7(4):4428–4441

    PubMed  Google Scholar 

  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visone R, Croce CM (2009) MiRNAs and cancer. Am J Pathol 174:1131–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voeller D, Reinders J, Meister G, Bosserhoff AK (2013) Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer 109:3116–3124

    Article  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker GJ, Indsto JO, Sood R, Faruque MU, Hu P, Pollock PM, Duray P, Holland EA, Brown K, Kefford RF, Trent JM, Mann GJ, Hayward NK (2004) Deletion mapping suggests that the 1p22 melanoma susceptibility gene is a tumor suppressor localized to a 9-Mb interval. Genes Chromosomes Cancer 41:56–64

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Li Y, Hong W, Zhen J, Ren J, Li Z, Xu A (2012) The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. Mol Biosyst 8:2924–2931

    Article  CAS  PubMed  Google Scholar 

  • Wang HF, Chen H, Ma MW, Wang JA, Tang TT, Ni LS, Yu JL, Li YZ, Bai BX (2013a) miR-573 regulates melanoma progression by targeting the melanoma cell adhesion molecule. Oncol Rep 30:520–526

    CAS  PubMed  Google Scholar 

  • Wang J, Chong KK, Nakamura Y, Nguyen L, Huang SK, Kuo C, Zhang W, Yu H, Morton DL, Hoon DS (2013b) B7-H3 associated with tumor progression and epigenetic regulatory activity in cutaneous melanoma. J Invest Dermatol 133:2050–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb CP, Taylor GA, Jeffers M, Fiscella M, Oskarsson M, Resau JH, Vande Woude GF (1998) Evidence for a role of Met-HGF/SF during ras-mediated tumorigenesis/metastasis. Oncogene 17:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J (2008) The MYCN oncogene is a direct target of miR-34a. Oncogene 27:5204–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Du Y, Chen X, Li P, Wang Y, Zang W, Zhao L, Li Z, Zhao G (2014) Expression patterns of microRNA-218 and its potential functions by targeting CIP2A and BMI1 genes in melanoma. Tumour Biol 35:8007–8015

    Article  CAS  PubMed  Google Scholar 

  • Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Belasco JG (2005) Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol 25:9198–9208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103:4034–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Brenn T, Brown ER, Doherty V, Melton DW (2012) Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer 106:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki H, Chijiwa T, Inoue Y, Abe Y, Suemizu H, Kawai K, Wakui M, Furukawa D, Mukai M, Kuwao S, Saegusa M, Nakamura M (2012) Overexpression of the miR-34 family suppresses invasive growth of malignant melanoma with the wild-type p53 gene. Exp Ther Med 3:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CH, Yue J, Pfeffer SR, Handorf CR, Pfeffer LM (2011) MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem 286:39172–39178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CH, Pfeffer SR, Sims M, Yue J, Wang Y, Linga VG, Paulus E, Davidoff AM, Pfeffer LM (2015) The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem 290:6037–6046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  • Zehavi L, Avraham R, Barzilai A, Bar-Ilan D, Navon R, Sidi Y, Avni D, Leibowitz-Amit R (2012) Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 11:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zehavi L, Schayek H, Jacob-Hirsch J, Sidi Y, Leibowitz-Amit R, Avni D (2015) MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma. Mol Cancer 14:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng Y, Cullen BR (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9:112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Cullen BR (2005) Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem 280:27595–27603

    Article  CAS  PubMed  Google Scholar 

  • Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, Winkler D, Durig J, van Oers MH, Mertens D, Dohner H, Stilgenbauer S (2009) miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113:3801–3808

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 103:9136–9141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, Burchard J, Dai X, Chang AN, Diaz RL, Marszalek JR, Bartz SR, Carleton M, Cleary MA, Linsley PS, Grandori C (2009) MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8:2756–2768

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lu L, Xiong Y, Qin W, Zhang Y, Qian Y, Jiang H, Liu W (2014) MLK3 promotes melanoma proliferation and invasion and is a target of microRNA-125b. Clin Exp Dermatol 39:376–384

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015a) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Na S, Liu C, Pan S, Cai J, Qiu J (2015b) MicroRNA-125b suppresses the epithelial-mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumour Biol. 2016;37(5):5941–9

    Google Scholar 

  • Zhang Z, Zhang S, Ma P, Jing Y, Peng H, Gao WQ, Zhuang G (2015c) Lin28B promotes melanoma growth by mediating a microRNA regulatory circuit. Carcinogenesis 36:937–945

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Li Q, Wang A, Jiao J (2015) YY1 regulates melanoma tumorigenesis through a miR-9 ~ RYBP axis. J Exp Clin Cancer Res 34:1

    Article  CAS  Google Scholar 

  • Zheng H, Fu R, Wang J-T, Liu O, Chen H, Jiang SW (2013) Advances in the techniques for the prediction of microRNA targets. Int J Mol Sci 14:8179–8187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou J, Xu D, Xie H, Tang J, Liu R, Li J, Wang S, Chen X, Su J, Zhou X, Xia K, He Q, Chen J, Xiong W, Cao P, Cao K (2015) miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1alpha. Cancer Biol Ther 16:846–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Bosserhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mione, M., Liebig, J., Munoz, L., Bosserhoff, A. (2017). MiRNAs in Malignant Melanoma. In: Bosserhoff, A. (eds) Melanoma Development. Springer, Cham. https://doi.org/10.1007/978-3-319-41319-8_6

Download citation

Publish with us

Policies and ethics