Comparing Two Commercial Brain Computer Interfaces for Serious Games and Virtual Environments

  • Szymon Fiałek
  • Fotis Liarokapis
Part of the Socio-Affective Computing book series (SAC, volume 4)


Brain-Computer Interface (BCI) technology is still under development, however the recent advances allowed to move BCI from research laboratories to people’s living rooms. One of the promising areas of BCI applications is in computer games and virtual environments. In this chapter, initially an overview of the state of the art of BCI applications in computer games is presented. Next, a user study of two inexpensive commercially available devices used in different games is presented. The results indicate that multi-channel BCI systems are better suited for controlling an avatar in 3D environments in an active manner, while BCI systems with one channel is well suited for use with games utilising neuro-feedback. Finally, the findings demonstrate the importance of matching appropriate BCI devices with the appropriate game.


Attention Deficit Hyperactive Disorder Computer Game Virtual Environment Motor Imagery Brain Computer Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30CrossRefGoogle Scholar
  2. 2.
    Berger H (1969) On the electroencephalogram of man. Sixth report. Electroencephalogr Clin Neurophysiol Suppl–28:173Google Scholar
  3. 3.
    Birbaumer N (2006) Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6):517–532CrossRefPubMedGoogle Scholar
  4. 4.
    Emotiv EEG Neuroheadset.
  5. 5.
    Finke A, Lenhardt A, Ritter H (2009) The mindgame: a p300-based brain–computer interface game. Neural Netw 22(9):1329–1333CrossRefPubMedGoogle Scholar
  6. 6.
    Guidi G, Frischer B, De Simone M, Cioci A, Spinetti A, Carosso L, Micoli LL, Russo M, Grasso T (2005) Virtualizing ancient rome: 3D acquisition and modeling of a large plaster-of-paris model of imperial rome. In: Electronic imaging 2005. International Society for Optics and Photonics, pp 119–133Google Scholar
  7. 7.
    Hart SG, Staveland LE (1988) Development of nasa-tlx (task load index): results of empirical and theoretical research. Adv Psychol 52:139–183CrossRefGoogle Scholar
  8. 8.
    Jackson MM, Mappus R, Barba E, Hussein S, Venkatesh G, Shastry C, Israeli A (2009) Continuous control paradigms for direct brain interfaces. In: Human-computer interaction. Novel interaction methods and techniques. Springer, Berlin/Heidelberg, pp 588–595Google Scholar
  9. 9.
    Kotchoubey B, Schneider D, Schleichert H, Strehl U, Uhlmann C, Blankenhorn V, Fröscher W, Birbaumer N (1996) Self-regulation of slow cortical potentials in epilepsy: a retrial with analysis of influencing factors. Epilepsy Res 25(3):269–276CrossRefPubMedGoogle Scholar
  10. 10.
    Krepki R, Blankertz B, Curio G, Müller K-R (2007) The Berlin brain-computer interface (BBCI)–towards a new communication channel for online control in gaming applications. Multimed Tools Appl 33(1):73–90CrossRefGoogle Scholar
  11. 11.
    Liarokapis F, Vourvopoulos A, Ene A, Petridis P (2013) Assessing brain-computer interfaces for controlling serious games. In: 2013 5th international conference on games and virtual worlds for serious applications (VS-GAMES). IEEE, Piscataway, pp 1–4CrossRefGoogle Scholar
  12. 12.
    Liarokapis F, Debattista K, Vourvopoulos A, Petridis P, Ene A (2014) Comparing interaction techniques for serious games through brain–computer interfaces: a user perception evaluation study. Entertain Comput 5(4):391–399CrossRefGoogle Scholar
  13. 13.
    Liarokapis F, Vourvopoulos A, Ene A (2015) Examining user experiences through a multimodal BCI puzzle game. In: 2015 19th international conference on information visualisation (iV). IEEE, Piscataway, pp 488–493CrossRefGoogle Scholar
  14. 14.
    Martin JH (1991) The collective electrical behavior of cortical neurons: the electroencephalogram and the mechanisms of epilepsy. Princ Neural Sci 3:777–791Google Scholar
  15. 15.
    Middendorf M, McMillan G, Calhoun G, Jones KS et al (2000) Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 8(2):211–214Google Scholar
  16. 16.
    Mindala. Scholar
  17. 17.
  18. 18.
    Pope AT, Palsson OS (2001) Helping video games rewire “our minds”.
  19. 19.
    Reuderink B, Nijholt A, Poel M (2009) Affective pacman: a frustrating game for brain-computer interface experiments. In: Intelligent technologies for interactive entertainment. Springer, Berlin/New York, pp 221–227CrossRefGoogle Scholar
  20. 20.
    Roberts LE, Birbaumer N, Rockstroh B, Lutzenberger W, Elbert T (1989) Self-report during feedback regulation of slow cortical potentials. Psychophysiology 26(4):392–403CrossRefPubMedGoogle Scholar
  21. 21.
    Shim B-S, Lee S-W, Shin J-H (2007) Implementation of a 3-dimensional game for developing balanced brainwave. In: 5th ACIS international conference on software engineering research, management & applications, 2007, SERA 2007. IEEE, Los Alamitos, pp 751–758Google Scholar
  22. 22.
    Siniatchkin M, Hierundar A, Kropp P, Kuhnert R, Gerber W-D, Stephani U (2000) Self-regulation of slow cortical potentials in children with migraine: an exploratory study. Appl Psychophysiol Biofeedback 25(1):13–32CrossRefPubMedGoogle Scholar
  23. 23.
  24. 24.
    Strehl U, Leins U, Goth G, Klinger C, Hinterberger T, Birbaumer N (2006) Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 118(5):e1530–e1540CrossRefPubMedGoogle Scholar
  25. 25.
    Tan DS, Nijholt A (2010) Brain-computer interfaces: applying our minds to human-computer interaction. Springer, LondonCrossRefGoogle Scholar
  26. 26.
    Tangermann M, Krauledat M, Grzeska K, Sagebaum M, Blankertz B, Vidaurre C, Müller K-R (2008) Playing pinball with non-invasive BCI. In: NIPS, Vancouver, pp 1641–1648Google Scholar
  27. 27.
    van de Laar B, Gurkok H, Plass-Oude Bos D, Poel M, Nijholt A (2013) Experiencing BCI control in a popular computer game. IEEE Trans Comput Intell AI Games 5(2):176–184Google Scholar
  28. 28.
    Vidal JJ (1977) Real-time detection of brain events in EEG. Proc IEEE 65(5):633–641CrossRefGoogle Scholar
  29. 29.
    Vourvopoulos A, Liarokapis F (2014) Evaluation of commercial brain–computer interfaces in real and virtual world environment: a pilot study. Comput Electr Eng 40(2):714–729CrossRefGoogle Scholar
  30. 30.
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791CrossRefPubMedGoogle Scholar
  31. 31.
    Yannakakis GN, Martínez HP (2015) Ratings are overrated! Front ICT 2:13CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.HCI Lab, Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations