In Vitro Implementation of a Stack Data Structure Based on DNA Strand Displacement

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9726)


We present an implementation of an in vitro signal recorder based on DNA assembly and strand displacement. The signal recorder implements a stack data structure in which both data as well as operators are represented by single stranded DNA “bricks”. The stack grows by adding push and write bricks and shrinks in last-in-first-out manner by adding pop and read bricks. We report the design of the signal recorder and its mode of operations and give experimental results from capillary electrophoresis as well as transmission electron microscopy that demonstrate the capability of the device to store and later release several successive signals. We conclude by discussing potential future improvements of our current results.


Migration Time Structural Hairpin Strand Displacement Branch Migration Runaway Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by EPSRC grant agreements no EP/J004111/1, EP/J004111/2, EP/L001489/1, EP/L001489/2. We thank Chien-yi Chang, Christoph Flamm, Alessandro Ceccarelli, Omer Markovitch, and Ben Shirt-Ediss for helpful discussions.


  1. 1.
    Seeman, N.C.: DNA in a material world. Nature 421(6921), 427–431 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. USA 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  3. 3.
    Stojanović, M.N., Stefanović, D.: Deoxyribozyme-Based Half-Adder. J. Am. Chem. Soc. 125(22), 6673–6676 (2003)CrossRefGoogle Scholar
  4. 4.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  5. 5.
    Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Y., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nano. 8(10), 755–762 (2013)CrossRefGoogle Scholar
  7. 7.
    Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8(62), 1281–1297 (2011)CrossRefGoogle Scholar
  8. 8.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–201 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, W., Zhang, F., Yan, H., Liu, Y.: DNA based arithmetic function: a half adder based on DNA strand displacement. Nanoscale 8(6), 3775–3784 (2016)CrossRefGoogle Scholar
  10. 10.
    Liu, H., Wang, J., Song, S., Fan, C., Gothelf, K.V.: A DNA-based system for selecting and displaying the combined result of two input variables. Nature Comm. 6, 10089 (2015)CrossRefGoogle Scholar
  11. 11.
    MacDonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic gates in an automaton. Nano Lett. 6(11), 2598–2603 (2006)CrossRefGoogle Scholar
  12. 12.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Terrazas, G., Gheorghe, M., Kendall, G., Krasnogor, N.: Evolving tiles for automated self-assembly design. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 2001–2008 (2007)Google Scholar
  14. 14.
    Siepmann, P., Martin, C.P., Vancea, I., Moriarty, P.J., Krasnogor, N.: A genetic algorithm approach to probing the evolution of self-organized nanostructured systems. Nano Lett. 7(7), 1985–1990 (2007)CrossRefGoogle Scholar
  15. 15.
    Woolley, R.A.J., Stirling, J., Radocea, A., Krasnogor, N., Moriarty, P.: Automated probe microscopy via evolutionary optimization at the atomic scale. Appl. Phys. Lett. 98(25), 253104 (2011)CrossRefGoogle Scholar
  16. 16.
    Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Algorithms. Mol. Biol. 6(1), 26 (2011)Google Scholar
  17. 17.
    Doye, J.P.K., Ouldridge, T.E., Louis, A.A., Romano, F., Šulc, P., Matek, C., Snodin, B.E.K., Rovigatti, L., Schreck, J.S., Harrison, R.M., Smith, W.P.J.: Coarse-graining DNA for simulations of DNA nanotechnology. Phys. Chem. Chem. Phys. 15(47), 20395 (2013)CrossRefGoogle Scholar
  18. 18.
    Hadorn, M., Bnzli, E., Fellermann, H., Eggenberger Hotz, P., Hanczyc, M.: Specific and reversible DNA-directed self-assembly of emulsion droplets. Proc. Nat. Acad. Sci. USA 109(47) (2012)Google Scholar
  19. 19.
    Fellermann, H., Cardelli, L.: Programmable chemistry in DNA addressable bioreactors. R. Soc. Interface 11(99), 20130987 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Interdisciplinary Computing and Complex Biosystems Research Group, School of ComputingNewcastle UniversityNewcastle-upon-TyneUK

Personalised recommendations