Skip to main content

In Vitro Implementation of a Stack Data Structure Based on DNA Strand Displacement

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9726))

Abstract

We present an implementation of an in vitro signal recorder based on DNA assembly and strand displacement. The signal recorder implements a stack data structure in which both data as well as operators are represented by single stranded DNA “bricks”. The stack grows by adding push and write bricks and shrinks in last-in-first-out manner by adding pop and read bricks. We report the design of the signal recorder and its mode of operations and give experimental results from capillary electrophoresis as well as transmission electron microscopy that demonstrate the capability of the device to store and later release several successive signals. We conclude by discussing potential future improvements of our current results.

H. Fellermann and A. Lopiccolo—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeman, N.C.: DNA in a material world. Nature 421(6921), 427–431 (2003)

    Article  MathSciNet  Google Scholar 

  2. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. USA 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  3. Stojanović, M.N., Stefanović, D.: Deoxyribozyme-Based Half-Adder. J. Am. Chem. Soc. 125(22), 6673–6676 (2003)

    Article  Google Scholar 

  4. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  5. Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nano. 8(10), 755–762 (2013)

    Article  Google Scholar 

  7. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8(62), 1281–1297 (2011)

    Article  Google Scholar 

  8. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–201 (2011)

    Article  Google Scholar 

  9. Li, W., Zhang, F., Yan, H., Liu, Y.: DNA based arithmetic function: a half adder based on DNA strand displacement. Nanoscale 8(6), 3775–3784 (2016)

    Article  Google Scholar 

  10. Liu, H., Wang, J., Song, S., Fan, C., Gothelf, K.V.: A DNA-based system for selecting and displaying the combined result of two input variables. Nature Comm. 6, 10089 (2015)

    Article  Google Scholar 

  11. MacDonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews, B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic gates in an automaton. Nano Lett. 6(11), 2598–2603 (2006)

    Article  Google Scholar 

  12. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Terrazas, G., Gheorghe, M., Kendall, G., Krasnogor, N.: Evolving tiles for automated self-assembly design. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 2001–2008 (2007)

    Google Scholar 

  14. Siepmann, P., Martin, C.P., Vancea, I., Moriarty, P.J., Krasnogor, N.: A genetic algorithm approach to probing the evolution of self-organized nanostructured systems. Nano Lett. 7(7), 1985–1990 (2007)

    Article  Google Scholar 

  15. Woolley, R.A.J., Stirling, J., Radocea, A., Krasnogor, N., Moriarty, P.: Automated probe microscopy via evolutionary optimization at the atomic scale. Appl. Phys. Lett. 98(25), 253104 (2011)

    Article  Google Scholar 

  16. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Algorithms. Mol. Biol. 6(1), 26 (2011)

    Google Scholar 

  17. Doye, J.P.K., Ouldridge, T.E., Louis, A.A., Romano, F., Šulc, P., Matek, C., Snodin, B.E.K., Rovigatti, L., Schreck, J.S., Harrison, R.M., Smith, W.P.J.: Coarse-graining DNA for simulations of DNA nanotechnology. Phys. Chem. Chem. Phys. 15(47), 20395 (2013)

    Article  Google Scholar 

  18. Hadorn, M., Bnzli, E., Fellermann, H., Eggenberger Hotz, P., Hanczyc, M.: Specific and reversible DNA-directed self-assembly of emulsion droplets. Proc. Nat. Acad. Sci. USA 109(47) (2012)

    Google Scholar 

  19. Fellermann, H., Cardelli, L.: Programmable chemistry in DNA addressable bioreactors. R. Soc. Interface 11(99), 20130987 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by EPSRC grant agreements no EP/J004111/1, EP/J004111/2, EP/L001489/1, EP/L001489/2. We thank Chien-yi Chang, Christoph Flamm, Alessandro Ceccarelli, Omer Markovitch, and Ben Shirt-Ediss for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalio Krasnogor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fellermann, H., Lopiccolo, A., Kozyra, J., Krasnogor, N. (2016). In Vitro Implementation of a Stack Data Structure Based on DNA Strand Displacement. In: Amos, M., CONDON, A. (eds) Unconventional Computation and Natural Computation. UCNC 2016. Lecture Notes in Computer Science(), vol 9726. Springer, Cham. https://doi.org/10.1007/978-3-319-41312-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41312-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41311-2

  • Online ISBN: 978-3-319-41312-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics