Skip to main content

Evolving Carbon Nanotube Reservoir Computers

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9726))

Abstract

Reservoir Computing is a useful general theoretical model for many dynamical systems. Here we show the first steps to applying the reservoir model as a simple computational layer to extract exploitable information from physical substrates consisting of single-walled carbon nanotubes and polymer mixtures. We argue that many physical substrates can be represented and configured into working reservoirs given some pre-training through evolutionary selected input-output mappings and targeted input stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Article  Google Scholar 

  2. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000)

    Article  Google Scholar 

  3. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16(7), 1413–1436 (2004)

    Article  MATH  Google Scholar 

  4. Broersma, H., Gomez, F., Miller, J., Petty, M., Tufte, G.: Nascence project: nanoscale engineering for novel computation using evolution. Int. J. Unconventional Comput. 8(4), 313–317 (2012)

    Google Scholar 

  5. Fernando, C.T., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 588–597. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148, 34 (2001)

    Google Scholar 

  7. Jaeger, H.: Short term memory in echo state networks. Tech. rep. no. GMD report 152. German National Research Center for Information Technology (2001)

    Google Scholar 

  8. Legenstein, R., Maass, W.: What makes a dynamical system computationally powerful. In: New Directions in Statistical Signal Processing: From Systems to Brain, pp. 127–154 (2007)

    Google Scholar 

  9. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  10. Wang, X., Halang, W.: Evaluation. In: Wang, X., Halang, W. (eds.) Discovery and Selection of Semantic Web Services. SCI, vol. 453, pp. 109–126. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  12. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: NASA/DoD Conference on Evolvable Hardware 2002, pp. 167–176. IEEE (2002)

    Google Scholar 

  13. Miller, J.F., Harding, S., Tufte, G.: Evolution-in-materio: evolving computation in materials. Evol. Intell. 7(1), 49–67 (2014)

    Article  Google Scholar 

  14. Nichele, S., Lykkebo, O.R., Tufte, G.: An investigation of underlying physical properties exploited by evolution in nanotubes materials. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 1220–1228. IEEE (2015)

    Google Scholar 

  15. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012). (Article 287)

    Article  Google Scholar 

  16. Lykkeb, O.R., Nichele, S., Laketic, D., Tufte, G.: Is there chaos in blobs of carbon nanotubes used to perform computation? In: The Seventh International Conference on Future Computational Technologies and Applications Future Computing 2015, pp. 12–17 (2015)

    Google Scholar 

  17. Sillin, H.O., Aguilera, R., Shieh, H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24(38), 384004 (2013)

    Article  Google Scholar 

  18. Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Aguilera, R., Shieh, H., Martin-Olmos, C., Sandouk, E.J., Aono, M., Gimzewski, J.K.: Self-organization and emergence of dynamical structures in neuromorphic atomic switch networks. In: Adamatzky, A., Chua, L. (eds.) Memristor Networks, pp. 173–209. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014)

    Article  Google Scholar 

  20. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was funded by a Defence Science and Technology Laboratory (DSTL) PhD studentship.

The authors thank the EU NASCENCE Project (http://www.nascence.eu) for providing the SWCNT materials used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Dale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A. (2016). Evolving Carbon Nanotube Reservoir Computers. In: Amos, M., CONDON, A. (eds) Unconventional Computation and Natural Computation. UCNC 2016. Lecture Notes in Computer Science(), vol 9726. Springer, Cham. https://doi.org/10.1007/978-3-319-41312-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41312-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41311-2

  • Online ISBN: 978-3-319-41312-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics