Discrete DNA Reaction-Diffusion Model for Implementing Simple Cellular Automaton

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9726)


We introduce a theoretical model of DNA chemical reaction-diffusion network capable of performing a simple cellular automaton. The model is based on well-characterized enzymatic bistable switch that was reported to work in vitro. Our main purpose is to propose an autonomous, feasible, and macro DNA system for experimental implementation.

As a demonstration, we choose a maze-solving cellular automaton. The key idea to emulate the automaton by chemical reactions is assuming a space discretized by hydrogel capsules which can be regarded as cells. The capsule is used both to keep the state uniform and control the communication between neighboring capsules.

Simulations under continuous and discrete space are successfully performed. The simulation results indicate that our model evolves as expected both in space and time from initial conditions. Further investigation also suggests that the ability of the model can be extended by changing parameters. Possible applications of this research include pattern formation and a simple computation. By overcoming some experimental difficulties, we expect that our framework can be a good candidate to program and implement a spatio-temporal chemical reaction system.


DNA chemical reaction network Cellular automaton Spatio-temporal evolution Pattern formation Maze solving 



We appreciate Masami Hagiya to motivate this research. Helpful advice from the experimental viewpoints were given by Hiroyuki Asanuma, Takashi Arimura, Yusuke Hara, and Nobuyoshi Miyamoto. We thank Teijiro Isokawa and Ferdinand Peper for discussion including the suggestion to simulate a normal automaton by a cellular automaton. This research was supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (No. 24104005) and Grant-in-Aid for Young Scientists (Start-up, 26880002).

Supplementary material


  1. 1.
    Rangnekar, A., LaBean, T.H.: Building DNA nanostructures for molecular computation, templated assembly, and biological applications. Acc. Chem. Res. 47(6), 1778–1788 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136(32), 11198–11211 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)CrossRefGoogle Scholar
  4. 4.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  5. 5.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  6. 6.
    Turberfield, A.J., Yurke, B.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)CrossRefGoogle Scholar
  7. 7.
    Fujii, T., Rondelez, Y.: Predator-prey molecular ecosystems. ACS Nano 7(1), 27–34 (2013)CrossRefGoogle Scholar
  8. 8.
    Kuzuya, A., Ohya, Y.: Nanomechanical molecular devices made of DNA origami. Acc. Chem. Res. 47(6), 1742–1749 (2014)CrossRefGoogle Scholar
  9. 9.
    Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new paradigm for artifacts. New Gener. Comput. 31, 27–45 (2013)CrossRefGoogle Scholar
  10. 10.
    Hagiya, M., Konagaya, A., Kobayashi, S., Saito, H., Murata, S.: Molecular robots with sensors and intelligence. Acc. Chem. Res. 47(6), 1681–1690 (2014)CrossRefGoogle Scholar
  11. 11.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B Biol. Sci. 237(641), 37–72 (1952)CrossRefGoogle Scholar
  12. 12.
    Lee, K.-J., McCormick, W.D., Pearson, J.E., Swinney, H.L.: Experimental observation of self-replicating spots in a reaction-diffusion system. Nature 369(6477), 215–218 (1994)CrossRefGoogle Scholar
  13. 13.
    Vanag, V.K., Epstein, I.R.: Tomography of reaction-diffusion microemulsions reveals three-dimensional turing patterns. Science 331(1309), 1309–1312 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chirieleison, S.M., Allen, P.B., Simpson, Z.B., Ellington, A.D., Chen, X.: Pattern transformation with DNA circuits. Nat. Chem. 5(12), 1000–1005 (2013)CrossRefGoogle Scholar
  16. 16.
    Padirac, A., Fujii, T., Estévez-Torres, A., Rondelez, Y.: Spatial waves in synthetic biochemical networks. J. Am. Chem. Soc. 135(39), 14586–14592 (2013)CrossRefGoogle Scholar
  17. 17.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  18. 18.
    Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. J. R. Soc. Interface 6(Suppl 4), S419–S436 (2009)CrossRefGoogle Scholar
  19. 19.
    Aubert, N., Mosca, C., Fujii, T., Hagiya, M., Rondelez, Y.: Computer-assisted design for scaling up systems based on DNA reaction networks. J. R. Soc. Interface 11(93), 20131167 (2014)CrossRefGoogle Scholar
  20. 20.
    Allen, P.B., Chen, X., Simpson, Z.B., Ellington, A.D.: Modeling scalable pattern generation in DNA reaction networks. Artif. Life 13, 441–448 (2012). MathSciNetGoogle Scholar
  21. 21.
    Scalise, D., Schulman, R.: Designing modular reaction-diffusion programs for complex pattern formation. Technology 02(01), 55–66 (2014)CrossRefGoogle Scholar
  22. 22.
    Dalchau, N., Seelig, G., Phillips, A.: Computational design of reaction-diffusion patterns using DNA-based chemical reaction networks. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 84–99. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Hagiya, M., Wang, S., Kawamata, I., Murata, S., Isokawa, T., Peper, F., Imai, K.: On DNA-based gellular automata. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 177–189. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-diffusion networks. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 67–83. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable memories. Proc. Nat. Acad. Sci. 109(47), E3212–E3220 (2012)CrossRefGoogle Scholar
  26. 26.
    Fischlechner, M., Schaerli, Y., Mohamed, M.F., Patil, S., Abell, C., Hollfelder, F.: Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat. Chem. 6(9), 791–796 (2014)CrossRefGoogle Scholar
  27. 27.
    Machado, A.H., Lundberg, D., Ribeiro, A.J., Veiga, F.J., Miguel, M.G., Lindman, B., Olsson, U.: Encapsulation of DNA in macroscopic and nanosized calcium alginate gel particles. Langmuir. 29(51), 15926–15935 (2013)CrossRefGoogle Scholar
  28. 28.
    Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Nayfeh, B.A.: Cellular automata for solving mazes. Dr. Dobb’s J. 18(2), 32–38 (1993)MathSciNetGoogle Scholar
  30. 30.
    Saber, M.A., Mirenkov, N.: A visual representation of cellular automata-like systems. J. Visual Lang. Comput. 15(6), 409–438 (2004)CrossRefGoogle Scholar
  31. 31.
    Hutton, T., Munafo, R., Trevorrow, A., Rokicki, T., Wills, D.: Ready, a cross-platform implementation of various reaction-diffusion systems.
  32. 32.
    Allen, P., Chen, X., Ellington, A.: Spatial control of DNA reaction networks by DNA sequence. Molecules 17(12), 13390–13402 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)CrossRefGoogle Scholar
  34. 34.
    Stellwagen, E., Yongjun, L., Stellwagen, N.C.: Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42(40), 11745–11750 (2003)CrossRefGoogle Scholar
  35. 35.
    Pluen, A., Netti, P.A., Jain, R.K., Berk, D.A.: Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77(1), 542–552 (1999)CrossRefGoogle Scholar
  36. 36.
    Bremond, N., Santanach-Carreras, E., Chu, L.-Y., Bibette, J.: Formation of liquid-core capsules having a thin hydrogel membrane: liquid pearls. Soft Matter 6(11), 2484–2488 (2010)CrossRefGoogle Scholar
  37. 37.
    Rendell, P.: Turing universality of the game of life. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 513–539. Springer, London (2002)CrossRefGoogle Scholar
  38. 38.
    Feng, L., Romulus, J., Li, M., Sha, R., Royer, J., Kun-Ta, W., Qin, X., Seeman, N.C., Weck, M., Chaikin, P.: Cinnamate-based DNA photolithography. Nat. Mater. 12, 747–753 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Robotics, School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Department of Information Science, Faculty of Liberal ArtsTohoku Gakuin UniversitySendaiJapan

Personalised recommendations