Crack Lip Contact Modeling Based on Lagrangian Multipliers with X-FEM

  • Yuan Jin
  • Olivier PierardEmail author
  • Eric Wyart
  • Eric Béchet
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 12)


The eXtended Finite Element Method (X-FEM), developed intensively in the past 15 years has become a competitive tool for the solution of problems with evolving discontinuities and singularities. In the present study, we focus on the application of X-FEM on frictionless contact problems in the context of fracture mechanics. A promising approach in the literature counting for this problem consists in applying Lagrangian multipliers. Meanwhile, as pointed out in Ji and Dolbow (Int J Numer Methods Eng 61:2508–2535, 2004), a naive choice for Lagrangian multiplier space leads to oscillatory multipliers on the contact surface. This oscillation results from a non-uniform but mesh-dependent inf-sup condition. In this work, we adapt the algorithm proposed in Béchet et al. (Int J Numer Methods Eng 78:931–954, 2009) on crack lip contact by discretizing the displacement field with both scalar and vector tip enrichment functions (Chevaugeon et al., Int J Multiscale Comput Eng 11:597–631, 2013). The influence of the tip enrichment functions on the stability of the formulation is addressed. We show evidences that the vector enrichment functions can improve the conditioning of the problem without jeopardizing the simulation accuracy in the presence of contact.



This work is funded by an SBO Project grant 110070: eSHM with AM of the Agency for Innovation by Science and Technology (IWT). The authors would like to thank C. Friebel and N. Poletz for the insightful discussion about the implementation of the numerical framework.


  1. 1.
    Amdouni, S., Moakher, M., Renard, Y.: a stabilized lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. Comput. Methods Appl. Mech. Eng. 270, 178–200 (2014)Google Scholar
  2. 2.
    Béchet, E., Minnebo, H., Moës, N., Burgardt, B.: Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. Methods Eng. 8, 1033–1056 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Béchet, E., Moës, N., Wohlmuth, B.: A stable Lagrangian multiplier space for stiff interface conditions within the extended finite element method. Int. J. Numer. Methods Eng. 78, 931–954 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brezzi, F., Bathe, K.J.: A discourse on the stability conditions for mixed finite element formulations. Comput. Methods Appl. Mech. Eng. 53, 27–57 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chapelle, C., Bathe, K.J.: The inf-sup test. Compos. Struct. 47, 537–545 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chevaugeon, N., Moës, N., Minnebo, H.: Improved crack tip enrichment functions and integration for crack modeling using the extended finite element method. Int. J. Multiscale Comput. Eng. 11, 597–631 (2013)CrossRefGoogle Scholar
  7. 7.
    Duflot, M.: A study of the representation of cracks with level sets. Int. J. Numer. Methods Eng. 70, 1261–1302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ferté E., Massin, P., Moës, N.: Interface problems with quadratic X-FEM: design of a stable multiplier space and error analysis. Int. J. Numer. Methods Eng. 11, 834–870 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fries, T.P.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75, 503–532 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Geniaut, S., Massin, P., Moës, N.: A stable 3D contact formulation using X-FEM. Eur. J. Comput. Mech. 16, 259–275 (2007)zbMATHGoogle Scholar
  11. 11.
    Giner, E., Tur, M., Tarancón, J.E., Fuenmayor, F.J.: Crack face contact in XFEM using a segment to segment approach. Int. J. Numer. Methods Eng. 82, 1424–1449 (2010)zbMATHGoogle Scholar
  12. 12.
    Gupta, V., Duarte, C.A., Babuška, I., Banerjee, U.: A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 266, 23–39 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gupta, V., Duarte, C.A., Babuška, I., Banerjee, U.: Stable GFEM (SGFEM): improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Comput. Methods Appl. Mech. Eng. 289, 355–386 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ji, H., Dolbow, J.E.: On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method. Int. J. Numer. Methods Eng. 61, 2508–2535 (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Laborde, P., Pommier, J., Renard, Y., Salaün, M.: High order extended finite element method for cracked domains. Int. J. Numer. Methods Eng. 64, 354–381 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Li, F.Z., Shih, C.F., Needleman, A.: A comparison of methods for calculating energy release rates. Eng. Fract. Mech. 21, 405–421 (1985)CrossRefGoogle Scholar
  17. 17.
    Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 1–4, 289–314 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 1, 131–150 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Moës, N., Gravouil, A., Belytschko, T.: Non-planar 3D crack growth by the extended finite element and level sets - Part I: mechanical model. Int. J. Numer. Methods Eng. 53, 2549–2568 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Moës, N., Béchet, E., Tourbier, M.: Imposing Dirichlet boundary conditions in the extended finite element method. Int. J. Numer. Methods Eng. 67, 1641–1669 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Moran, B., Shih, C.F.: Crack tip and associated domain integrals from momentum and energy balance. Eng. Fract. Mech. 27, 615–641 (1987)CrossRefGoogle Scholar
  22. 22.
    Moran, B., Shih, C.F.: A general treatment of crack tip contour integrals. Int. J. Fract. 35, 295–310 (1987)CrossRefGoogle Scholar
  23. 23.
    Pereira, J.P., Duarte, C.A., Jiao, X.: Three-dimensional crack growth with hp-generalized finite element and face offsetting methods. Comput. Mech. 46, 431–453 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shih, C.F., Moran, B., Nakamura, T.: Energy release rate along a three-dimensional crack front in a thermally stressed body. Int. J. Fract. 30, 79–102 (1986)Google Scholar
  25. 25.
    Siavelis, M., Guiton, M.L.E., Massin, P., Moës, N.: Large sliding contact along branched discontinuities with X-FEM. Comput. Mech. 1, 201–219 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Stolarska, M., Chopp, D.L., Moës, N., Belyschko T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51, 943–960 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Wyart, E.: Three-dimensional crack analysis in aeronautical structures using the substructured finite element/extended finite element method. Ph.D Thesis, Universié catholique de Louvain Faculté des Sciences Appliquées (2007)Google Scholar
  28. 28.
    Yau, J.F., Wang, S.S., Corten, H.T.: A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J. Appl. Mech. 47, 335–341 (1980)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yuan Jin
    • 1
  • Olivier Pierard
    • 2
    Email author
  • Eric Wyart
    • 1
  • Eric Béchet
    • 2
  1. 1.CenaeroGosseliesBelgium
  2. 2.Université de LiègeLiègeBelgium

Personalised recommendations