Advertisement

eXtended Hybridizable Discontinuous Galerkin (X-HDG) for Void and Bimaterial Problems

  • Ceren GürkanEmail author
  • Esther Sala-Lardies
  • Martin Kronbichler
  • Sonia Fernández-Méndez
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 12)

Abstract

A strategy for the Hybridizable Discontinuous Galerkin (HDG) solution of problems with voids, inclusions, free surfaces, and material interfaces is proposed. It is based on an eXtended Finite Element (X-FEM) philosophy with a level-set description of interfaces where the computational mesh is not required to fit the interface (i.e. the boundary). This reduces the cost of mesh generation and, in particular, avoids continuous remeshing for evolving interfaces. Differently to previous proposals for the HDG solution with unfitting meshes, the computational mesh covers the domain in our approach, avoiding extrapolations and ensuring the robustness of the method. The local problem in elements not cut by the interface and the global problem are discretized as usual in HDG. A modified local problem is considered for elements cut by the interface. At every cut element, an auxiliary trace variable on the boundary is introduced, which is eliminated afterwards using interface conditions, keeping the original unknowns and the structure of the local problem solver. The solution is enriched with Heaviside functions in case of bimaterial problems; in case of problems with voids, inclusions, or free surfaces no such enrichment is required. Numerical experiments demonstrate how X-HDG keeps the optimal convergence, superconvergence, and accuracy of HDG with no need of adapting the computational mesh to the interface boundary.

Notes

Acknowledgements

This work was supported by the DAFOH2 project (Ministerio de Economia y Competitividad, MTM2013-46313-R), and the Erasmus Mundus Joint Doctorate SEED project (European Commission).

References

  1. 1.
    Cheng, K.W., Fries, T.P.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82 (5), 564–590 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cockburn, B.: Discontinuous Galerkin methods for computational fluid dynamics. In: Encyclopedia of Computational Mechanics. Fluids, vol. 3, chap. 4 Wiley, New York (2004)Google Scholar
  3. 3.
    Cockburn, B., Solano, M.: Solving convection-diffusion problems on curved domains by extensions from subdomains. J. Sci. Comput. 59 (2), 512–543 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77 (264), 1887–1916 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2), 1319–1365 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80 (274), 723–760 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81 (279), 1327–1353 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cockburn, B., Qiu, W., Solano, M.: A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity. Math. Comput. 83 (286), 665–699 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dreau, K., Chevaugeon, N., Moës, N.: Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput. Methods Appl. Mech. Eng. 199 (29–32), 1922–1936 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fries, T.P., Belytschko, T.: The extended∕generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng. 84 (3), 253–304 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable Discontinuous Galerkin p-adaptivity for wave propagation problems. Int. J. Numer. Methods Fluids 72 (12), 1244–1262 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Giorgiani, G., Modesto, D., Fernández-Méndez, S., Huerta, A.: High-order continuous and discontinuous Galerkin methods for wave problems. Int. J. Numer. Methods Fluids 73 (10), 883–903 (2013)MathSciNetGoogle Scholar
  13. 13.
    Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hesthaven, J., Warburton, T.: Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181 (1), 186–221 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Huerta, A., Angeloski, A., Roca, X., Peraire, J.: Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 96 (9), 529–560 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huynh, L., Nguyen, N., Peraire, J., Khoo, B.: A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Methods Eng. 93, 183–200 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kirby, R., Sherwin, S.J., Cockburn, B.: To CG or to HDG: A comparative study. J. Sci. Comput. 51 (1), 183–212 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Montlaur, A., Fernández-Méndez, S., Huerta, A.: Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int. J. Numer. Methods Fluids 57 (9), 1071–1092 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nguyen, N., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199 (9–12), 582–597 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230 (4), 1147–1170 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Peraire, J., Persson, P.O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30 (4), 1806–1824 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sala-Lardies, E., Fernández-Méndez, S., Huerta, A.: Optimally convergent high-order X-FEM for problems with voids and inclusions. In: ECCOMAS 2012: 6th European Congress on Computational Methods in Applied Sciences and Engineering. Programme book of abstracts, September 10–14, 2012, Vienna, Austria, pp. 1–14 (2012)Google Scholar
  23. 23.
    Wang, B., Khoo, B.C.: Hybridizable discontinuous Galerkin method (HDG) for Stokes interface flow. J. Comput. Phys. 247, 262–278 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ceren Gürkan
    • 1
    Email author
  • Esther Sala-Lardies
    • 1
  • Martin Kronbichler
    • 2
  • Sonia Fernández-Méndez
    • 1
  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Technische Universität MünchenMünchenGermany

Personalised recommendations