Advertisement

Modeling of Fracture in Polycrystalline Materials

  • Steffen BeeseEmail author
  • Stefan Loehnert
  • Peter Wriggers
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 12)

Abstract

Predicting the behaviour of fracture processes within polycrystalline microstructures will help to develop more accurate mesoscale material models and will give insight to effects which can only be measured ex-situ. Therefore a non-local damage model is introduced and coupled to finite deformation crystal plasticity. Cracks are represented sharply by using the extended finite element method in combination with level set techniques. As damage evolves cracks start to propagate. A new crack propagation algorithm is presented and studied by academic examples.

Keywords

Slip System Crack Front Crystal Plasticity Enrichment Function Void Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the German Research Foundation (DFG) under the Transregional Collaborative Research Center SFB/TR73: “Manufacturing of Complex Functional Components with Variants by Using a New Sheet Metal Forming Process—Sheet-Bulk Metal Forming”.

References

  1. 1.
    Asaro, R.J.: Crystal plasticity. J. Appl. Mech. 50, 921–934 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barth, T.J., Sethian, J.A.: Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145, 1–40 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Becker, R., Needleman, A., Suresh, S., Tvergaard, V., Vasudevan, A.: An analysis of ductile failure by grain boundary void growth. Acta Metall. 37, 99–120 (1989)CrossRefGoogle Scholar
  4. 4.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50, 993–1013 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bertram, A.: An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plast. 15, 353–374 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bertram, A.: Elasticity and Plasticity of Large Deformations. Springer, Berlin (2008)zbMATHGoogle Scholar
  8. 8.
    Duflot, M.: A study of the representation of cracks with level sets. Int. J. Numer. Methods Eng. 70, 1261–1302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Elguedj, T., Gravouil, A., Combescure, A.: Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 195, 501–515 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Eringen, A.C., Suhubi, E.: Nonlinear theory of simple micro-elastic solids i. Int. J. Eng. Sci. 2, 189–203 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fries, T.-P., Baydoun, M.: Crack propagation with the extended finite element method and a hybrid explicit implicit crack description. Int. J. Numer. Methods Eng. 89, 1527–1558 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gravouil, A., Moës, N., Belytschko, T.: Non-planar 3d crack growth by the extended finite element and level sets part ii: level set update. Int. J. Numer. Methods Eng. 53, 2569–2586 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character 221, 163–198 (1921)Google Scholar
  14. 14.
    Holl, M., Rogge, T., Loehnert, S., Wriggers, P., Rolfes, R.: 3d multiscale crack propagation using the xfem applied to a gas turbine blade. Comput. Mech. 53, 173–188 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hughes, T.J., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics. VIII: the Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73,  173–189 (1989)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Legrain, G., Moës, N., Verron, E.: Stress analysis around crack tips in finite strain problems using the extended finite element method. Int. J. Numer. Methods Eng. 63, 290–314 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Loehnert, S., Mueller-Hoeppe, D., Wriggers, P.: 3d corrected xfem approach and extension to finite deformation theory. Int. J. Numer. Methods Eng. 86, 431–452 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Moës, N., Dolbow, J.,  Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Moës, N., Gravouil, A., Belytschko, T.: Non-planar 3d crack growth by the extended finite element and level sets part I: mechanical model. Int. J. Numer. Methods Eng. 53, 2549–2568 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Needleman, A., Tvergaard, V.: An analysis of ductile rupture modes at a crack tip. J. Mech. Phys. Solids 35, 151–183 (1987)CrossRefzbMATHGoogle Scholar
  21. 21.
    Nemat-Nasser, S., Okinaka, T., Ni, L.: A physically-based constitutive model for BCC crystals with application to polycrystalline tantalum. J. Mech. Phys. Solids 46, 1009–1038 (1998)CrossRefzbMATHGoogle Scholar
  22. 22.
    Oliver, J., Huespe, A.: Continuum approach to material failure in strong discontinuity settings. Comput. Methods Appl. Mech. Eng. 193, 3195–3220 (2004); Computational failure mechanicsGoogle Scholar
  23. 23.
    Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P.: Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39, 3391–3403 (1996)CrossRefzbMATHGoogle Scholar
  24. 24.
    Pietruszczak, S., Mróz, Z.: Finite element analysis of deformation of strain-softening materials. Int. J. Numer. Methods Eng. 17, 327–334 (1981)CrossRefzbMATHGoogle Scholar
  25. 25.
    Quey, R., Dawson, P., Barbe, F.: Large-scale 3d random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)CrossRefzbMATHGoogle Scholar
  26. 26.
    Reusch, F., Svendsen, B., Klingbeil, D.: Local and non-local Gurson-based ductile damage and failure modelling at large deformation. Eur. J. Mech. A Solids 22, 779–792 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Steinmann, P., Stein, E.: On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput. Methods Appl. Mech. Eng. 129, 235–254 (1996)CrossRefzbMATHGoogle Scholar
  28. 28.
    Svendsen, B.: A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. Int. J. Plast. 14, 473–488 (1998)CrossRefzbMATHGoogle Scholar
  29. 29.
    Tvergaard, V., Needleman, A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Steffen Beese
    • 1
    Email author
  • Stefan Loehnert
    • 1
  • Peter Wriggers
    • 1
  1. 1.Institute of Continuum MechanicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations