Advertisement

Higher-Order Accurate Integration for Cut Elements with Chen-Babuška Nodes

  • Thomas-Peter FriesEmail author
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 12)

Abstract

The higher-order accurate numerical integration of geometries that are implicitly defined by level-set functions is considered. A higher-order background mesh is employed providing an interpolation of the level-set function by Lagrangian shape functions. The integration may take place on the zero-level set or in the domains defined by the sign of the level-set function. This work is a follow-up of Fries and Omerović (Int J Numer Methods Eng, doi:10.1002/nme.5121). Herein, it is shown that special distributions of the element nodes, which are optimized for integration, yield significantly better results than equally-spaced nodes. Different error norms are proposed which allow to investigate the accuracy of general implicit geometries in two and three dimensions.

References

  1. 1.
    Abedian, A., Parvizian, J., Düster, A., Khademyzadeh, H., Rank, E.: Performance of different integration schemes in facing discontinuities in the finite cell method. Int. J. Comput. Methods 10, 1–24 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng. 199, 2680–2686 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Q., Babuška, I.: Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput. Methods Appl. Mech. Eng. 128, 405–417 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Q., Babuška, I.: The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Comput. Methods Appl. Mech. Eng. 137, 89–94 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, K., Fries, T.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82, 564–590 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dréau, K., Chevaugeon, N., Moës, N.: Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput. Methods Appl. Mech. Eng. 199, 1922–1936 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Düster, A., Parvizian, J., Yang, Z., Rank, E.: The finite cell method for three-dimensional problems of solid mechanics. Comput. Methods Appl. Mech. Eng. 197, 3768–3782 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fries, T., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fries, T., Omerović, S.: Higher-order accurate integration of implicit geometries. Int. J. Numer. Methods Eng. doi:10.1002/nme.5121 (2015, accepted)Google Scholar
  11. 11.
    Gordon, W., Hall, C.: Construction of curvi-linear co-ordinate systems and applications to mesh generation. Int. J. Numer. Methods Eng. 7, 461–477 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gordon, W., Hall, C.: Transfinite element methods: blending function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Laborde, P., Pommier, J., Renard, Y., Salaün, M.: High-order extended finite element method for cracked domains. Int. J. Numer. Methods Eng. 64, 354–381 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Legay, A., Wang, H., Belytschko, T.: Strong and weak arbitrary discontinuities in spectral finite elements. Int. J. Numer. Methods Eng. 64, 991–1008 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Legrain, G., Chevaugeon, N., Dréau, K.: High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. Comput. Methods Appl. Mech. Eng. 241–244, 172–189 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35, 230–254 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lorensen, W., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar
  18. 18.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Internat. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRefzbMATHGoogle Scholar
  20. 20.
    Moumnassi, M., Belouettar, S., Béchet, É., Bordas, S., Quoirin, D., Potier-Ferry, M.: Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput. Methods Appl. Mech. Eng. 200, 774–796 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mousavi, S., Sukumar, N.: Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47, 535–554 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Müller, B., Kummer, F., Oberlack, M.: Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Internat. J. Numer. Methods Eng. 96, 512–528 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Phillips, G.: Interpolation of Approximation by Polynomials. Springer, Berlin (2013)Google Scholar
  25. 25.
    Rivlin, T.: An Introduction to the Approximation of Functions. Dover, New York, NY (1981)zbMATHGoogle Scholar
  26. 26.
    Sala-Lardies, E., Fernández-Méndez, S., Huerta, A.: Optimally convergent high-order X-FEM for problems with voids and inclusion. In: Proceedings of the ECCOMAS 2012, Vienna, Austria (2012)Google Scholar
  27. 27.
    Sethian, J.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  28. 28.
    Stazi, F., Budyn, E., Chessa, J., Belytschko, T.: An extended finite element method with higher-order elements for curved cracks. Comput. Mech. 31, 38–48 (2003)CrossRefzbMATHGoogle Scholar
  29. 29.
    Szabados, J., Vertesi, P.: Interpolation of Functions. World Scientific, Singapore (1990)CrossRefzbMATHGoogle Scholar
  30. 30.
    Szabó, B., Düster, A., Rank, E.: The p-Version of the Finite Element Method, chap. 5, pp. 119–139. Wiley, Chichester (2004)Google Scholar
  31. 31.
    Ventura, G.: On the elimination of quadrature subcells for discontinuous functions in the eXtended finite element method. Int. J. Numer. Methods Eng. 66, 761–795 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ventura, G., Gracie, R., Belytschko, T.: Fast integration and weight function blending in the extended finite element method. Int. J. Numer. Methods Eng. 77, 1–29 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zi, G., Belytschko, T.: New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57, 2221–2240 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Structural AnalysisGraz University of TechnologyGrazAustria

Personalised recommendations