Stabilized X-FEM for Heaviside and Nonlinear Enrichments

  • Giulio VenturaEmail author
  • Claudia Tesei
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 12)


One of the drawbacks of the eXtended Finite Element Method and similar approaches, like the Generalized Finite Element Method, is the problem of ill-conditioning of the related systems of equations at the solution stage. This occurs for example in Heaviside function enrichments when the discontinuity is close to discretisation nodes but also for non-linear enrichment functions used in conjunction to geometric enrichment domains. In the present work the motivation of ill-conditioning is analyzed to derive a novel methodology for stabilization, based on setting proper constraints for the variables. This methodology does not impact on the initial formulation nor in the element stiffness computation, so that it is very effective for engineering applications. Results are analyzed in 1D and 3D to show its performance and properties.


Condition Number Penalty Parameter Enrichment Function Element Stiffness Matrix Element Shape Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ABAQUS: ABAQUS Documentation. Dassault Systèmes, Providence (2014)Google Scholar
  2. 2.
    Abdelaziz, Y., Hamouine, A.: A survey of the extended finite element. Comput. Struct. 86, 1141–1151 (2008)CrossRefGoogle Scholar
  3. 3.
    Babuška, I., Banerjee, U.: Stable generalized finite element method (SGFEM). Comput. Methods Appl. Mech. Eng. 201–204, 91–111 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Babuška, I., Banerjee, U., Osborn, J.: Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12, 1–125 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Béchet, E., Minnebo, H., Moës, N., Burgardt, B.: Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. Methods Eng. 64, 1033–1056 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Belytschko, T., Gracie, R., Ventura, G.: A review of extended/generalized finite element methods for material modeling. Model. Simul. Mater. Sci. Eng. 17, p. Article number 043001 (2009)Google Scholar
  7. 7.
    Benvenuti, E.: Mesh–size–objective XFEM for regularized continuous–discontinuous transition. Finite Elem. Anal. Des. 47, 1326–1336 (2011)CrossRefGoogle Scholar
  8. 8.
    Benvenuti, E.: XFEM with equivalent eigenstrain for matrix–inclusion interfaces. Comput. Mech. 53, 893–908 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Benvenuti, E., Tralli, A.: Simulation of finite-width process zone for concrete-like materials. Comput. Mech. 50, 479–497 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Benvenuti, E., Tralli, A., Ventura, G.: A regularized XFEM model for the transition from continuous to discontinuous displacements. Int. J. Numer. Methods Eng. 74, 911–944 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Benvenuti, E., Ventura, G., Ponara, N., Tralli, A.: Variationally consistent extended FE model for 3D planar and curved imperfect interfaces. Comput. Methods Appl. Math. Eng. 267, 1–22 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R., Keyes, D.: Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods. Int. J. Numer. Methods Eng. 90, 311–328 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Duarte, C., Kim, D.: Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput. Methods Appl. Mech. Eng. 197, 487–504 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ferté, G., Massin, P., Moës, N.: Convergence analysis of linear or quadratic X-FEM for curved free boundaries. Comput. Methods Appl. Mech. Eng. 278, 794–827 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fries, T.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75, 503–532 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gupta, V., Duarte, C.A., Babuška, I., Banerjee, U.: Stable GFEM (SGFEM): improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Comput. Methods Appl. Mech. Eng. 289, 355–386 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Koehler, J.: On the dislocation theory of plastic deformation. Phys. Rev. 60, 397–410 (1941)CrossRefGoogle Scholar
  20. 20.
    Laborde, P., Pommier, J., Renard, Y., Salaun, M.: High order extended finite element method for cracked domains. Int. J. Numer. Meth. Eng. 64, 354–381 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lang, C., Makhija, D., Doostan, A., Maute, K.: A simple and efficient preconditioning scheme for heaviside enriched XFEM. Numer. Anal. arXiv:1312.6092v1 (2013)Google Scholar
  22. 22.
    Loehnert, S.: A stabilization technique for the regularization of nearly singular extended finite elements. Comput. Mech. 54, 523–533 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    LS-DYNA: User’s Manual. Livermore Software Technology Corporation, Livermore (2013)Google Scholar
  24. 24.
    Martin, A., Esnault, J.-B., Massin, P.: About the use of standard integration schemes for X-FEM in solid mechanics plasticity. Comput. Methods Appl. Mech. Eng. 283, 551–572 (2015):MathSciNetCrossRefGoogle Scholar
  25. 25.
    Menk, A., Bordas, S.P.A.: A robust preconditioning technique for the extended finite element method. Int. J. Numer. Methods Eng. 85, 1609–1632 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mousavi, S.E., Pask, J.E., Sukumar, N.: Efficient adaptive integration of functions with sharp gradients and cusps in n-dimensional parallelepipeds. Int. J. Numer. Methods Eng. 91, 343–357 (2012)CrossRefzbMATHGoogle Scholar
  27. 27.
    Müller, B., Kummer, F., Oberlack, M.: Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Methods Eng. 96, 512–528 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nabarro, F.: Theory of Crystal Dislocations. Dover Publications, New York (1967)Google Scholar
  29. 29.
    Sillem, A., Simone, A., Sluys, L.J.: The orthonormalized generalized finite element method-OGFEM: efficient and stable reduction of approximation errors through multiple orthonormalized enriched basis functions. Comput. Methods Appl. Mech. Eng. 287, 112–149 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181, 43–69 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sudhakar, Y., Wall, W.A.: Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput. Methods Appl. Mech. Eng. 258, 39–54 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ventura, G.: On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int. J. Numer. Methods Eng. 66, 761–795 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ventura, G., Moran, B., Belytschko, T.: Dislocations by partition of unity. J. Numer. Methods Eng. 62, 1463–1487 (2005)CrossRefzbMATHGoogle Scholar
  34. 34.
    Ventura, G., Gracie, R., Belytschko, T.: Fast integration and weight function blending in the extended finite element method. Int. J. Numer. Methods Eng. 77, 1–29 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ventura, G., Benvenuti, E.: Equivalent polynomials for quadrature in heaviside function enriched elements. Int. J. Numer. Methods Eng. 102, 688–710 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Waisman, H., Berger-Vergiat, L.: An adaptive domain decomposition preconditioner for crack propagation problems modeled by XFEM. Int. J. Multiscale Comput. Eng. 11, 633–654 (2013)CrossRefGoogle Scholar
  37. 37.
    Yazid, A., Abdelkader, N., Abdelmadjid, H.: A state-of-the-art review of the X-FEM for computational fracture mechanics. Appl. Math. Model. 33, 4269–4282 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhang, Q., Banerjee, U., Babuška, I.: Higher order stable generalized finite element method. Numer. Math. 128, 1–29 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.DISEGPolitecnico di TorinoTorinoItaly

Personalised recommendations