Skip to main content

State-of-Art of Thermochemical Heat Storage Systems

  • Chapter
  • First Online:
A Thermochemical Heat Storage System for Households

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A combined heat and power (CHP) or cogeneration plant simultaneously produces thermal and electrical energy, primarily to meet industry and household demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin, A.H., Rosen, M.A.: A critical review of thermochemical energy storage systems. Open Renew. Energy J. 4, 42–46 (2011)

    Article  Google Scholar 

  • Ajzoul, T.: Analyse et Optimisation des Transferts Thermiques dans les Réacteurs Solide-Gaz (Doctorate/Ph.D). University Abdelmalek Essaadji, Morocco (1993)

    Google Scholar 

  • Aristov, Y.I.: Challenging offers of material science for adsorption heat transformation: a review. Appl. Therm. Eng. 50, 1610–1618 (2013). doi:10.1016/j.applthermaleng.2011.09.003

    Article  Google Scholar 

  • Aristov, Y.I., Restuccia, G., Tokarev, M.M., Cacciola, G.: Selective water sorbents for multiple applications, 10. Energy storage ability. React. Kinet. Catal. Lett. 69, 345–353 (2000). doi:10.1023/A:1005616420331

    Article  Google Scholar 

  • Arteconi, A., Hewitt, N.J., Polonara, F.: Domestic demand-side management (DSM): role of heat pumps and thermal energy storage (TES) systems. Appl. Therm. Eng. 51, 155–165 (2013). doi:10.1016/j.applthermaleng.2012.09.023

    Article  Google Scholar 

  • Asperger, S.: Chemical Kinetics and Inorganic Reaction Mechanisms, 2nd edn, Inorganic Chemistry. sp, Zagreb, Croatia. http://www.springer.com/chemistry/organic+chemistry/book/978-0-306-47747-8 (2003)

    Google Scholar 

  • Azoumah, Y., Mazet, N., Neveu, P.: Constructal network for heat and mass transfer in a solid–gas reactive porous medium. Int. J. Heat Mass Transf. 47, 2961–2970 (2004). doi:10.1016/j.ijheatmasstransfer.2004.03.022

    Article  MATH  Google Scholar 

  • Balasubramanian, G., Ghommem, M., Hajj, M.R., Wong, W.P., Tomlin, J.A., Puri, I.K.: Modeling of thermochemical energy storage by salt hydrates. Int. J. Heat Mass Transf. 53, 5700–5706 (2010). doi:10.1016/j.ijheatmasstransfer.2010.08.012

    Article  MATH  Google Scholar 

  • Bales, C.: Final report of IEA-SHC task 32 subtask B “Chemical and sorption storage” The overview (A Report of IEA Solar Heating and Cooling programme—Task 32 Advanced storage concepts for solar and low energy buildings No. B7 of subtash B), Advanced storage concepts for solar and low energy buildings. BASE Consultants SA—Geneva, Swiss (2008)

    Google Scholar 

  • Bales, C., Nordlander, S.: TCA Evaluation : Lab Measurements, Modelling and System Simulations (Research and Engineering No. SHA-512). Dalarna University, School of Technology and Business Studies, Environmental Engineering, Falun, Sweden (2005)

    Google Scholar 

  • Barbieri, E.S., Melino, F., Morini, M.: Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications. Appl. Energy 97, 714–722 (2012). doi:10.1016/j.apenergy.2012.01.001

    Article  Google Scholar 

  • Benitez, J.: Principles and Modern Applications of Mass Transfer Operations, 2 edn. ed, Environmental Chemistry/General Environmental Chemistry. Wiley-Interscience, Hoboken, N.J (2009)

    Google Scholar 

  • Bogdan, Ž., Kopjar, D.: Improvement of the cogeneration plant economy by using heat accumulator. Energy 31, 2285–2292 (2006). doi:10.1016/j.energy.2006.01.012

    Article  Google Scholar 

  • Bolis, V., Broyer, M., Barbaglia, A., Busco, C., Foddanu, G.M., Ugliengo, P.: Van der Waals interactions on acidic centres localized in zeolites nanocavities: a calorimetric and computer modeling study. J. Mol. Catal. A: Chem. 204–205, 561–569 (2003). doi:10.1016/S1381-1169(03)00339-X

    Article  Google Scholar 

  • Bolis, V., Busco, C., Ugliengo, P.: Thermodynamic study of water adsorption in high-silica zeolites. J. Phys. Chem. B 110, 14849–14859 (2006). doi:10.1021/jp061078q

    Article  Google Scholar 

  • Caliskan, H., Dincer, I., Hepbasli, A.: Thermodynamic analyses and assessments of various thermal energy storage systems for buildings. Energy Convers. Manage. 62, 109–122 (2012). doi:10.1016/j.enconman.2012.03.024

    Article  Google Scholar 

  • Castets, K., Mazet, N.: Analysis and optimisation of the cyclic working mode of thermochemical transformers. Appl. Therm. Eng. 20, 1649–1666 (2000). doi:10.1016/S1359-4311(99)00083-6

    Article  Google Scholar 

  • Castets, K., Mazet, N.: Optimisation of the reactor configuration on the performance of the cyclic working mode of thermochemical transformers: reactor miniaturization. Energy 26, 271–286 (2001). doi:10.1016/S0360-5442(00)00065-7

    Article  Google Scholar 

  • Chahbani, M.H., Labidi, J., Paris, J.: Effect of mass transfer kinetics on the performance of adsorptive heat pump systems. Appl. Therm. Eng. 22, 23–40 (2002). doi:10.1016/S1359-4311(01)00067-9

    Article  Google Scholar 

  • Chan, C.W., Ling-Chin, J., Roskilly, A.P.: A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation. Appl. Therm. Eng. 50, 1257–1273 (2013). doi:10.1016/j.applthermaleng.2012.06.041

    Article  Google Scholar 

  • Chan, Y.N.I., Hill, F.B., Wong, Y.W.: Equilibrium theory of a pressure swing adsorption process. Chem. Eng. Sci. 36, 243–251 (1981). doi:10.1016/0009-2509(81)85002-6

    Article  Google Scholar 

  • Chesi, A., Ferrara, G., Ferrari, L., Magnani, S., Tarani, F.: Influence of the heat storage size on the plant performance in a smart user case study. Appl. Energy 112, 1454–1465 (2013). doi:10.1016/j.apenergy.2013.01.089

    Article  Google Scholar 

  • Chua, H.T., Ng, K.C., Chakraborty, A., Oo, N.M., Othman, M.A.: Adsorption characteristics of silica gel+ water systems. J. Chem. Eng. Data 47, 1177–1181 (2002). doi:10.1021/je0255067

    Article  Google Scholar 

  • Cot-Gores, J., Castell, A., Cabeza, L.F.: Thermochemical energy storage and conversion: a-state-of-the-art review of the experimental research under practical conditions. Renew. Sustain. Energy Rev. 16, 5207–5224 (2012). doi:10.1016/j.rser.2012.04.007

    Article  Google Scholar 

  • Courbon, E., Skrylnyk, A., Hennaut, S., Andre, P., Frere, M.: Simple procedure to evaluate thermal energy storage densities of solid- gas systems: Application to solar energy storage in buildings. Récents Progrès en Génie des Procédés, Ed. SFGP, Paris, France 6 (2011). ISBN 2-910239-75-6

    Google Scholar 

  • Critoph, R.E., Zhong, Y.: Review of trends in solid sorption refrigeration and heat pumping technology. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 219, 285–300 (2005). doi:10.1243/095440805X6982

    Article  Google Scholar 

  • Davidson, J.H., Quinnell, J., Bursh, J.: Development of Space Heating and Domestic Hot Water Systems with Compact Thermal Energy Storage—Report of the Working Group WB2 for the period February 2009 to December 2012 (A report of the IEA Solar Heating and Cooling/ Energy Conservation through Energy Storage programme—Task 42/Annex 24: No. IEA SHC/ECES—Task 42/24—Compact Thermal Energy Storage) (2013)

    Google Scholar 

  • Dawoud, B., Aristov, Y.: Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps. Int. J. Heat Mass Transf. 46, 273–281 (2003). doi:10.1016/S0017-9310(02)00288-0

    Article  Google Scholar 

  • de Boer, R., Haije, W.G., Veldhuis, J.B.J.: Determination of structural, thermodynamic and phase properties in the Na2 S-H2O system for application in a chemical heat pump. Thermochim. Acta 395, 3–19 (2002)

    Article  Google Scholar 

  • de Boer, R., Haije, W.G., Veldhuis, J.B.J., Smeding, S.F.: Solid-sorption cooling with integrated thermal storage: The SWEAT prototype. In: 3rd International Heat Powered Cycles Conference - HPC 2004, Larnaca, Cyprus, 11–13 Oktober 2004., ECN-RX–04-080. Presented at the International Heat Powered Cycles Conference (HPC-2004), ECN Energy Efficiency in Industry, Larnaca, Cyprus, p. 10 (2004)

    Google Scholar 

  • de Boer, R., Smeding, S.F., Bach, P.W.: Heat storage systems for use in an industrial batch process: (Results of) a case study. In: ECOSTOCK 2006 Conference, Phase Change Materials/Thermochemical Storage/Solar. Presented at the The Tenth International Conference on Thermal Energy Storage, Richard Stockton College, Richard Stockton College of New Jersey, USA, p. 7 (2006)

    Google Scholar 

  • Delgado, J.M.P.Q.: Heat and mass transfer in porous media, 1st edn. Advanced Structured Materials, Springer, Berlin (2012). ISBN 978-3-642-21966-5

    Google Scholar 

  • Dinçer, I., Rosen, M.: Thermal energy storage systems and applications. Wiley, New York (2002). ISBN 0-471-49573-5 978-0-471-49573-4

    Google Scholar 

  • Ding, Y., Riffat, S.B.: Thermochemical energy storage technologies for building applications: a state-of-the-art review. Int. J. Low-Carbon Tech. Voö. 0, pp. 1–11, cts004 (2012). doi:10.1093/ijlct/cts004

    Google Scholar 

  • Douss, N., Meunier, F.: Experimental study of cascading adsorption cycles. Chem. Eng. Sci. 44, 225–235 (1989). doi:10.1016/0009-2509(89)85060-2

    Article  Google Scholar 

  • Druske, M.-M., N’Tsoukpoe, K.E., Wickenheisser, M., Rammelberg, H.U., Schmidt, T., Ruck, W.: Mineralogical approach on the selection of candidates for thermochemical heat storage. In: 8th International Renewable Energy Storage Conference and Exhibition. Presented at the IRES 2013, Eurosolar, Berlin, Germany, p. 1 (2013)

    Google Scholar 

  • Duquesne, M.: Résolution et réduction d’un modèle non-linéaire de stockage d’énergie par adsorption sur des zéolithes (Doctorate/Ph.D). Université Sciences et Technologies - Bordeaux I, France (2013)

    Google Scholar 

  • Duval, F., Fichot, F., Quintard, M.: A local thermal non-equilibrium model for two-phase flows with phase-change in porous media. Int. J. Heat Mass Transf. 47, 613–639 (2004). doi:10.1016/j.ijheatmasstransfer.2003.07.005

    Article  MATH  Google Scholar 

  • Ferchaud, C., Zondag, H., de Boer, R., Rindt, C.C.M.: Characterization of the sorption process in thermochemical materials for seasonal solar heat storage application. In: The 12th International Conference on Energy Storage, INNO-ST-08. Presented at the Innostock 2012, Lleida, Spain, p. 4 (2012a)

    Google Scholar 

  • Ferchaud, C.J., Zondag, H.A., Veldhuis, J.B.J., de Boer, R.: Study of the reversible water vapour sorption process of MgSO4.7H2O and MgCl2.6H2O under the conditions of seasonal solar heat storage. J. Phys. Conf. Ser. 395, 012069 (2012b). doi:10.1088/1742-6596/395/1/012069

    Google Scholar 

  • Few, P.C., Smith, M.A., Twidell, J.W.: Modelling of a combined heat and power (CHP) plant incorporating a heat pump for domestic use. Energy 22, 651–659 (1997). doi:10.1016/S0360-5442(96)00171-5

    Article  Google Scholar 

  • Fopah Lele, A., Korhammer, K., Wegscheider, N., Rammelberg, H.U., Schmidt, T., Ruck, W.K.L.: Thermal Conductivity of Salt Hydrates as Porous Material using Calorimetric (DSC) Method. In: 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics. Presented at the ExHFT-8, A. Faria - Edicao Electronica Lda., Lisbon, Portugal, p. 5 (2013)

    Google Scholar 

  • Frost, A., Pearson, R.: Kinetics and mechanism, 2nd edn. J. Phys. Chem. 65, 384–1000 (1961). doi:10.1021/j100820a601

    Article  Google Scholar 

  • Fukai, J., Kanou, M., Kodama, Y., Miyatake, O.: Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers. Manage. 41, 1543–1556 (2000). doi:10.1016/S0196-8904(99)00166-1

    Article  Google Scholar 

  • Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Williamson, T., Dorer, V.: Closed sorption heat storage based on aqueous sodium hydroxide. Proceedings of the 2nd International Conference on Solar Heating and Cooling for Buildings and Industry (SHC 2013). Energy Procedia 48, 337–346 (2014a). doi:10.1016/j.egypro.2014.02.039

    Google Scholar 

  • Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Williamson, T., Dorer, V.: Development of a closed sorption heat storage prototype. Energy Procedia 46, 134–141 (2014b). doi:10.1016/j.egypro.2014.01.166

    Google Scholar 

  • Ghommem, M., Balasubramanian, G., Hajj, M.R., Wong, W.P., Tomlin, J.A., Puri, I.K.: Release of stored thermochemical energy from dehydrated salts. Int. J. Heat Mass Transf. 54, 4856–4863 (2011). doi:10.1016/j.ijheatmasstransfer.2011.06.041

    Article  MATH  Google Scholar 

  • Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., Cabeza, L.F.: State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modelisation. Renew. Sustain. Energy Rev. 14, 31–55 (2010). doi:10.1016/j.rser.2009.07.035

    Article  Google Scholar 

  • Gordeeva, L., Grekova, A., Krieger, T., Aristov, Y.: Composites “binary salts in porous matrix” for adsorption heat transformation. Appl. Therm. Eng. 50, 1633–1638 (2013). doi:10.1016/j.applthermaleng.2011.07.040

    Article  Google Scholar 

  • Gordeeva, L.G., Aristov, Y.I.: Composites “salt inside porous matrix” for adsorption heat transformation: a current state-of-the-art and new trends. Int. J. Low Carbon Technol. 0, 1–15 (2012). doi:10.1093/ijlct/cts050

    Google Scholar 

  • Gordeeva, L.G., Mrowiec-Bialon, J., Jarzebski, A.B., Lachowski, A.I., Malinowski, J.J., Aristov, Y.I.: Selective water sorbents for multiple applications, 8. sorption properties of CaCl2−SiO2 sol-gel composites. React. Kinet. Catal. Lett. 66, 113–120 (1999). doi:10.1007/BF02475749

    Article  Google Scholar 

  • Grevel, K.-D., Majzlan, J.: Internally consistent thermodynamic data for magnesium sulfate hydrates. Geochim. Cosmochim. Acta 73, 6805–6815 (2009). doi:10.1016/j.gca.2009.08.005

    Article  Google Scholar 

  • Guilleminot, J.J., Choisier, A., Chalfen, J.B., Nicolas, S., Reymoney, J.L.: Heat transfer intensification in fixed bed adsorbers. Heat Recovery Syst. CHP 13, 297–300 (1993). doi:10.1016/0890-4332(93)90052-W

    Article  Google Scholar 

  • Haeseldonckx, D., Peeters, L., Helsen, L., D’haeseleer, W.: The impact of thermal storage on the operational behaviour of residential CHP facilities and the overall CO2 emissions. Renew. Sustain. Energy Rev. 11, 1227–1243 (2007). doi:10.1016/j.rser.2005.09.004

    Google Scholar 

  • Haije, W.G., Veldhuis, J.B.J., Smeding, S.F., Grisel, R.J.H.: Solid/vapour sorption heat transformer: design and performance. Appl. Therm. Eng. 27, 1371–1376 (2007). doi:10.1016/j.applthermaleng.2006.10.022

    Article  Google Scholar 

  • Hauer, A.: Evaluation of adsorbent materials for heat pump and thermal energy storage applications in open systems. Adsorption 13, 399–405 (2007). doi:10.1007/s10450-007-9054-0

    Article  Google Scholar 

  • Hauer, A., Avemann, E.L.: Open absorption systems for air conditioning and thermal energy storage. In: Paksoy, H.Ö. (ed.) Thermal Energy Storage for Sustainable Energy Consumption, NATO Science Series, pp. 429–444. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  • Hennaut, S., Thomas, S., Davin, E., Skrylnyk, A., Frère, M., André, P.: Simulation of a vertical ground heat exchanger as low temperature heat source for a closed adsorption seasonal storage of solar heat. Proceedings of the 2nd International Conference on Solar Heating and Cooling for Buildings and Industry (SHC 2013). Energy Procedia 48, 370–379 (2014). doi:10.1016/j.egypro.2014.02.043

    Google Scholar 

  • Henninger, S.K., Jeremias, F., Kummer, H., Schossig, P., Henning, H.-M.: Novel sorption materials for solar heating and cooling. Energy Procedia 30, 279–288 (2012). doi:10.1016/j.egypro.2012.11.033

    Article  Google Scholar 

  • Hongois, S., Kuznik, F., Stevens, P., Roux, J.-J.: Development and characterisation of a new MgSO4−zeolite composite for long-term thermal energy storage. Sol. Energy Mater. Sol. Cells 95, 1831–1837 (2011). doi:10.1016/j.solmat.2011.01.050

    Article  Google Scholar 

  • Hui, L., N’Tsoukpoe, E.K., Nolwenn, L.P., Lingai, L.: Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples. Energy Convers. Manage. 52, 2427–2436 (2011). doi:10.1016/j.enconman.2010.12.049

    Article  Google Scholar 

  • Ibrahim, H., Ilinca, A., Perron, J.: Energy storage systems—characteristics and comparisons. Renew. Sustain. Energy Rev. 12, 1221–1250 (2008). doi:10.1016/j.rser.2007.01.023

    Article  Google Scholar 

  • Ilis, G.G., Mobedi, M., Ülkü, S.: A parametric study on isobaric adsorption process in a closed adsorbent bed. Int. Commun. Heat Mass Transfer 37, 540–547 (2010). doi:10.1016/j.icheatmasstransfer.2010.01.003

    Article  Google Scholar 

  • Inaba, H., Seo, J.K., Horibe, A.: Numerical study on adsorption enhancement of rectangular adsorption bed. Heat Mass Transfer 41, 133–146 (2004). doi:10.1007/s00231-004-0512-x

    Google Scholar 

  • Ishitobi, H., Uruma, K., Takeuchi, M., Ryu, J., Kato, Y.: Dehydration and hydration behavior of metal-salt-modified materials for chemical heat pumps. Appl. Therm. Eng. 50, 1639–1644 (2013). doi:10.1016/j.applthermaleng.2011.07.020

    Article  Google Scholar 

  • Jiang, L., Wang, L.W., Wang, R.Z.: Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration. Int. J. Therm. Sci. 81, 68–75 (2014). doi:10.1016/j.ijthermalsci.2014.03.003

    Article  Google Scholar 

  • Kandiner, H.J.: Die Legierungen des Magnesiums. Magnesium, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edn, pp. 373–482. Springer, Berlin Heidelberg (1970)

    Google Scholar 

  • Kato, Y.: Low exergy reactor for decentralized energy utilisation. Prog. Nucl. Energy 37, 405–410 (2000). doi:10.1016/S0149-1970(00)00079-2

    Article  Google Scholar 

  • Katulić, S., Čehil, M., Bogdan, Ž.: A novel method for finding the optimal heat storage tank capacity for a cogeneration power plant. Appl. Therm. Eng. 65, 530–538 (2014). doi:10.1016/j.applthermaleng.2014.01.051

    Article  Google Scholar 

  • Kerkes, H.: Seasonal sorption heat storage. In: DANVAK Seminar. Presented at the Solar heating systems-Combisystems-heat storage, DTU Lyngby(2006)

    Google Scholar 

  • Kerkes, H., Drück, H.: Energetic and economic aspects of seasonal heat storage in single and multifamily houses. In: ESTEC 2011. Presented at the 5th European Solar Thermal Energy Conference, ESTEC, Marseille, France, p. 6 (2011)

    Google Scholar 

  • Khan, M.Z.I., Alam, K.C.A., Saha, B.B., Akisawa, A., Kashiwagi, T.: Study on a re-heat two-stage adsorption chiller—the influence of thermal capacitance ratio, overall thermal conductance ratio and adsorbent mass on system performance. Appl. Therm. Eng. 27, 1677–1685 (2007). doi:10.1016/j.applthermaleng.2006.07.005

    Article  Google Scholar 

  • Krönauer, A., Lävemann, E., Hauer, A.: MobS II—Mobile Sorption Heat Storage in Industrial Waste Heat Recovery (2012)

    Google Scholar 

  • Lahmidi, H., Mauran, S., Goetz, V.: Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems. Sol. Energy 80, 883–893 (2006). doi:10.1016/j.solener.2005.01.014

    Article  Google Scholar 

  • Levine, I.N.: Physical Chemistry—McGraw-Hill Companies 9780072318081, 5th edn—Better World Books (WWW Document). http://www.abebooks.com/servlet/BookDetailsPL?bi=12041960887&searchurl=an%3DIra%2BN.%2BLevine%26amp%3Bsts%3Dt%26amp%3Btn%3DPhysical%2BChemistry (2002). Accessed 24 Mar 2014

  • Li, M., Sun, C.J., Wang, R.Z., Cai, W.D.: Development of no valve solar ice maker. Appl. Therm. Eng. 24, 865–872 (2004). doi:10.1016/j.applthermaleng.2003.10.002

    Article  Google Scholar 

  • Li, S.L., Wu, J.Y., Xia, Z.Z., Wang, R.Z.: Study on the adsorption isosteres of the composite adsorbent CaCl2 and expanded graphite. Energy Convers. Manage. 52, 1501–1506 (2011). doi:10.1016/j.enconman.2010.10.015

    Article  Google Scholar 

  • Li, S.-L., Xu, Q.: Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 6, 1656 (2013). doi:10.1039/c3ee40507a

    Article  Google Scholar 

  • Li, T., Wang, R., Kiplagat, J.K.: A target-oriented solid-gas thermochemical sorption heat transformer for integrated energy storage and energy upgrade. AIChE J. 59, 1334–1347 (2013). doi:10.1002/aic.13899

    Article  Google Scholar 

  • Lu, H.-B., Mazet, N., Spinner, B.: Modelling of gas-solid reaction—coupling of heat and mass transfer with chemical reaction. Chem. Eng. Sci. 51, 3829–3845 (1996)

    Article  Google Scholar 

  • Lu, Y.Z., Wang, R.Z., Zhang, M., Jiangzhou, S.: Adsorption cold storage system with zeolite–water working pair used for locomotive air conditioning. Energy Convers. Manage. 44, 1733–1743 (2003). doi:10.1016/S0196-8904(02)00169-3

    Article  Google Scholar 

  • Lund, H., Šiupšinskas, G., Martinaitis, V.: Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania. Appl. Energy 82, 214–227 (2005). doi:10.1016/j.apenergy.2004.10.013

    Article  Google Scholar 

  • Ma, Q., Luo, L., Wang, R.Z., Sauce, G.: A review on transportation of heat energy over long distance: exploratory development. Renew. Sustain. Energy Rev. 13, 1532–1540 (2009). doi:10.1016/j.rser.2008.10.004

    Article  Google Scholar 

  • Marias, F., Neveu, P., Tanguy, G., Papillon, P.: Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode. Energy 66, 757–765 (2014). doi:10.1016/j.energy.2014.01.101

    Article  Google Scholar 

  • Maru, H.C., Dullea, J.F., Huang, V.S.: Molten Salt Thermal Energy Storage Systems: Salt Selection (Project 8981/ United states energy research No. COO-2888-1). Institute of Gas Technology, Chicago, Illinois, USA (1976)

    Google Scholar 

  • Mauer, L.J., Taylor, L.S.: Water-solids interactions: deliquescence. Ann. Rev. Food Sci. Technol. 1, 41–63 (2010). doi:10.1146/annurev.food.080708.100915

    Article  Google Scholar 

  • Mauran, S., Lahmidi, H., Goetz, V.: Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kWh by a solid/gas reaction. Sol. Energy 82, 623–636 (2008). doi:10.1016/j.solener.2008.01.002

    Article  Google Scholar 

  • Mauran, S., Prades, P., L’Haridon, F.: Heat and mass transfer in consolidated reacting beds for thermochemical systems. Heat Recovery Syst. CHP, Special Issue Solid Sorption Refrigeration and Heat Pumps 13, 315–319 (1993). doi:10.1016/0890-4332(93)90055-Z

    Article  Google Scholar 

  • Mauran, S., Rigaud, L., Coudevylle, O.: Application of the Carman-Kozeny correlation to a high-porosity and anisotropic consolidated medium: the compressed expanded natural graphite. Transp. Porous Media 43, 355–376 (2001). doi:10.1023/A:1010735118136

    Article  Google Scholar 

  • Mazet, N., Amouroux, M., Spinner, B.: Analysis and experimental study of the transformation of a non-isothermal solid/gas reacting medium. Chem. Eng. Commun. 99, 155–174 (1991). doi:10.1080/00986449108911585

    Article  Google Scholar 

  • McBain, J.W.: XCIX. The mechanism of the adsorption (“sorption”) of hydrogen by carbon. Philos. Mag. Ser. 6(18), 916–935 (1909). doi:10.1080/14786441208636769

    Google Scholar 

  • Mette, B., Kerskes, H., Drück, H.: Concepts of long-term thermochemical energy storage for solar thermal applications—selected examples. Energy Procedia 30, 321–330 (2012). doi:10.1016/j.egypro.2012.11.038

    Article  Google Scholar 

  • Mette, B., Kerskes, H., Drück, H., Müller-Steinhagen, H.: New highly efficient regeneration process for thermochemical energy storage. Appl. Energy 109, 352–359 (2013). doi:10.1016/j.apenergy.2013.01.087

    Article  Google Scholar 

  • Meunier, F.: Adsorption heat powered heat pumps. Appl. Therm. Eng. 61, 830–836 (2013). doi:10.1016/j.applthermaleng.2013.04.050

    Article  Google Scholar 

  • Michel, B.: Procédé thermochimique pour le stockage intersaisonnier de l’énergie solaire : modélisation multi-échelles et expérimentation d’un prototype sous air humide (Doctorate/Ph.D.). Université de Perpignan, Perpignan, France (2012)

    Google Scholar 

  • Michel, B., Mazet, N., Mauran, S., Stitou, D., Xu, J.: Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed. Energy 47, 553–563 (2012). doi:10.1016/j.energy.2012.09.029

    Article  Google Scholar 

  • Michel, B., Neveu, P., Mazet, N.: Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications. Energy 72, 702–716 (2014). doi:10.1016/j.energy.2014.05.097

    Article  Google Scholar 

  • N’Tsoukpoe, K.: Etude du stockage à long terme de l’énergie solaire thermique par procédé d’absorption LiBr-H2O pour le chauffage de l’habitat (Doctorate/Ph.D.). Université de Grenoble, France (2012)

    Google Scholar 

  • N’Tsoukpoe, K.E., Liu, H., Le Pierrès, N., Luo, L.: A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 13, 2385–2396 (2009). doi:10.1016/j.rser.2009.05.008

    Article  Google Scholar 

  • N’Tsoukpoe, K.E., Le Pierrès, N., Luo, L.: Experimentation of a LiBr–H2O absorption process for long-term solar thermal storage: prototype design and first results. Energy 53, 179–198 (2013). doi:10.1016/j.energy.2013.02.023

    Article  Google Scholar 

  • N’Tsoukpoe, K.E., Perier-Muzet, M., Le Pierrès, N., Luo, L., Mangin, D.: Thermodynamic study of a LiBr–H2O absorption process for solar heat storage with crystallisation of the solution. Sol. Energy Sol. Heating Cooling 104, 2–15 (2014a). doi:10.1016/j.solener.2013.07.024

    Google Scholar 

  • N’Tsoukpoe, K.E., Schmidt, T., Rammelberg, H.U., Watts, B.A., Ruck, W.K.L.: A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Appl. Energy 124, 1–16 (2014b). doi:10.1016/j.apenergy.2014.02.053

    Article  Google Scholar 

  • Neveu, P., Castaing-Lasvignottes, J.: Development of a numerical sizing tool for a solid-gas thermochemical transformer—I. Impact of the microscopic process on the dynamic behaviour of a solid-gas reactor. Appl. Therm. Eng. 17, 501–518 (1997). doi:10.1016/S1359-4311(96)00065-8

    Article  Google Scholar 

  • Neveu, P., Tescari, S., Aussel, D., Mazet, N.: Combined constructal and exergy optimisation of thermochemical reactors for high temperature heat storage. Energy Convers. Manage. 71, 186–198 (2013). doi:10.1016/j.enconman.2013.03.035

    Article  Google Scholar 

  • Ng, E.-P., Mintova, S.: Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 114, 1–26 (2008). doi:10.1016/j.micromeso.2007.12.022

    Article  Google Scholar 

  • Oliveira, R.G., Wang, R.Z.: A consolidated calcium chloride-expanded graphite compound for use in sorption refrigeration systems. Carbon 45, 390–396 (2007). doi:10.1016/j.carbon.2006.09.007

    Article  Google Scholar 

  • Olives, R., Mauran, S.: A highly conductive porous medium for solid–gas reactions: effect of the dispersed phase on the thermal tortuosity. Transp. Porous Media 43, 377–394 (2001)

    Article  Google Scholar 

  • Opel, O., Rammelberg, H.U., Gérard, M., Ruck, W.K.L.: Thermochemical storage materials research - TGA/DSC-hydration studies. In: International Conference on Sustainable Energy Storage. Presented at the ICSES, Belfast 2011, Belfast, Ireland, p. 7 (2011)

    Google Scholar 

  • Pagliarini, G., Rainieri, S.: Modeling of a thermal energy storage system coupled with combined heat and power generation for the heating requirements of a University Campus. Appl. Therm. Eng. 30, 1255–1261 (2010). doi:10.1016/j.applthermaleng.2010.02.008

    Article  Google Scholar 

  • Paksoy, H.Ö.: Thermal energy storage for sustainable energy consumption - fundamentals, case studies and design. In: Proceedings of the NATO Advanced Study Institute on Thermal Energy Storage for Sustainable Energy Consumption—Fundamentals, Case Studies and Design Izmir, Turkey. ed, NATO Science Series II: (closed). Springer, Dordrecht, The Netherlands (2005)

    Google Scholar 

  • Pang, S.C., Masjuki, H.H., Kalam, M.A., Hazrat, M.A.: Liquid absorption and solid adsorption system for household, industrial and automobile applications: A review. Renew. Sustain. Energy Rev. 28, 836–847 (2013). doi:10.1016/j.rser.2013.08.029

    Article  Google Scholar 

  • Pinel, P., Cruickshank, C.A., Beausoleil-Morrison, I., Wills, A.: A review of available methods for seasonal storage of solar thermal energy in residential applications. Renew. Sustain. Energy Rev. 15, 3341–3359 (2011). doi:10.1016/j.rser.2011.04.013

    Article  Google Scholar 

  • Posern, K.: Untersuchungen von Magnesiumsulfat-Hydraten und Sulfat/Chlorid-Mischungen für die Eignung als Aktivstoff in Kompositmaterialien für die thermochemische Wärmespeicherung (Doctorate/Ph.D.). Bauhaus-Universität Weimar, Fakultät Bauingenieurwesen, Weimar, Germany (2012)

    Google Scholar 

  • Posern, K., Kaps, C.: Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2. Thermochim. Acta 502, 73–76 (2010). doi:10.1016/j.tca.2010.02.009

    Article  Google Scholar 

  • Quinnell, J.A., Davidson, J.H.: Distributed solar thermal: innovations in thermal storage. Ann. Rev. Heat Transfer 15, 11 (2012)

    Article  Google Scholar 

  • Radermacher, R., Hwang, Y.: Vapor Compression Heat Pumps with Refrigerant Mixtures, 1st edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  • Raine, R.D., Sharifi, V.N., Swithenbank, J.: Optimisation of combined heat and power production for buildings using heat storage. Energy Convers. Manage. 87, 164–174 (2014). doi:10.1016/j.enconman.2014.07.022

    Article  Google Scholar 

  • Raldow, W.M., Wentworth, W.E.: Chemical heat pumps—a basic thermodynamic analysis. Sol. Energy 23, 75–79 (1979). doi:10.1016/0038-092X(79)90046-X

    Article  Google Scholar 

  • Rammelberg, H.U., Myrau, M., Schmidt, T., Ruck, W.K.L.: An optimisation of salt hydrates for thermochemical heat storage. In: IMPRES-2013, Paper No. IMPRES2013-117. Presented at the International Symposium on Innovative Materials for Processes in Energy Systems, Chemical Science & Engineering Series: Innovative Materials for Processes in Energy Systems, Fukuoka, Japan, p. 6 (2013)

    Google Scholar 

  • Robert, L., Burwell, J.: Manual of Symbols and Terminology for Physicochemical Quantities and Units - Appendix II. Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Part II: Heterogeneous Catalysis. Pure Appl. Chem. 46, 71–90 (1976). doi:10.1351/pac197646010071

  • Rouquerol, F., Rouquerol, J., Sing, K.S.W.: Adsorption by powders and porous solids. Academic Press, San Diego. Vakuum in Forschung und Praxis vol. 11, pp. 191–191 (1999). doi:10.1002/vipr.19990110317

    Google Scholar 

  • Rowsell, J.L.C., Yaghi, O.M.: Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004). doi:10.1016/j.micromeso.2004.03.034

    Article  Google Scholar 

  • Ruiter, J.P.: Thermal energy storage by means of an absorption cycle, Ph.D. thesis, TU-Delft University of Technology, Delft, Netherlands (1987)

    Google Scholar 

  • Schmidt, T., Rammelberg, H.U., Rönnebeck, T., N’Tsoukpoe, K.E., Fopah Lele, A., Rohde, C., Ruck, W.: Conception of a heat storage system for household applications. In: 7th International Renewable Energy Storage Conference and Exhibition. Presented at the IRES-2012, Eurosolar, Berlin, Germany, pp. 429–433 (2012)

    Google Scholar 

  • Sharonov, V.E., Aristov, Y.I.: Chemical and adsorption heat pumps: comments on the second law efficiency. Chem. Eng. J. 136, 419–424 (2008). doi:10.1016/j.cej.2007.07.026

    Article  Google Scholar 

  • Siddiqui, A., Marnay, C., Firestone, R., Zhou, N.: Distributed generation with heat recovery and storage. J. Energy Eng. 133, 181–210 (2007). doi:10.1061/(ASCE)0733-9402(2007)133:3(181)

  • Sieres, J., Fernández-Seara, J.: Mass transfer characteristics of a structured packing for ammonia rectification in ammonia–water absorption refrigeration systems. Int. J. Refrig. 30, 58–67 (2007). doi:10.1016/j.ijrefrig.2006.04.009

    Google Scholar 

  • Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603–619 (1985). doi:10.1351/pac198557040603

    Google Scholar 

  • Sircar, S., Hufton, J.R.: Why does the linear driving force model for adsorption kinetics work? Adsorption 6, 137–147 (2000)

    Article  Google Scholar 

  • Smith, M.A., Few, P.C.: Modelling of a domestic-scale co-generation plant thermal capacitance considerations. Appl. Energy 68, 69–82 (2001). doi:10.1016/S0306-2619(00)00042-8

    Google Scholar 

  • Srivastava, N.C., Eames, I.W.: A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems. Appl. Therm. Eng. 18, 707–714 (1998). doi:10.1016/S1359-4311(97)00106-3

    Google Scholar 

  • Steiger, M., Linnow, K., Juling, H., Gülker, G., Jarad, A.E., Brüggerhoff, S., Kirchner, D.: Hydration of MgSO4·H2O and generation of stress in porous materials. Cryst. Growth Des. 8, 336–343 (2008). doi:10.1021/cg060688c

    Google Scholar 

  • Stitou, D.: Transformation, Conversion, Stockage, Transport de l’Énergie Thermique par Procédés Thermochimiques et Thermo-hydrauliques (HDR). Université de Perpignan, Perpignan, France (2013)

    Google Scholar 

  • Streckienė, G., Martinaitis, V., Andersen, A.N., Katz, J.: Feasibility of CHP-plants with thermal stores in the German spot market. Appl. Energy 86, 2308–2316 (2009). doi:10.1016/j.apenergy.2009.03.023

    Google Scholar 

  • Sugimoto, K., Dinnebier, R.E., Hanson, J.C.: Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2 · nH2O; n = 1, 2, 4). Acta Crystallogr. Sect. B Struct. Sci. 63, 235–242 (2007). doi:10.1107/S0108768107002558

    Google Scholar 

  • Sun, L.M., Ben Amar, N., Meunier, F.: Numerical study on coupled heat and mass transfers in an absorber with external fluid heating. Heat Recovery Syst. CHP 15, 19–29 (1995). doi:10.1016/0890-4332(95)90034-9

    Google Scholar 

  • Tamainot-Telto, Z., Critoph, R.E.: Monolithic carbon for sorption refrigeration and heat pump applications. Appl. Therm. Eng. 21, 37–52 (2001). doi:10.1016/S1359-4311(00)00030-2

    Google Scholar 

  • Tanashev, Y.Y., Aristov, Y.I.: Thermal conductivity of a silica gel+ calcium chloride system: The effect of adsorbed water. J. Eng. Phys. Thermophys. 73, 876–883 (2000). doi:10.1007/BF02681573

    Google Scholar 

  • Tanguy, G., Papillon, P., Paulus, C.: Seasonal storage coupled to solar combisystem : dynamic simulations for process dimensioning. In: EuroSun_international Conference on Solar Heating, Cooling and Buildings. Presented at the EuroSun, ISES-EuroSun, Graz, Austria, p. 8 (2010)

    Google Scholar 

  • Tatsidjodoung, P., Le Pierrès, N., Luo, L.: A review of potential materials for thermal energy storage in building applications. Renewable Sustain. Energy Rev. 18, 327–349 (2013). doi:10.1016/j.rser.2012.10.025

    Google Scholar 

  • Thapa, S., Chukwu, S., Khaliq, A., Weiss, L.: Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement. Energy Convers. Manage. 79, 161–170 (2014). doi:10.1016/j.enconman.2013.12.019

    Google Scholar 

  • Tina, G.M., Passarello, G.: Short-term scheduling of industrial cogeneration systems for annual revenue maximisation. Energy 42, 46–56 (2012). doi:10.1016/j.energy.2011.10.025

    Google Scholar 

  • Van Essen, V.M., Cot Gores, J., Bleijendaal, L.P.J., Zondag, H.A., Schuitema, R., Bakker, M., van Helden, W.G.J.: Characterization of salt hydrates for compact seasonal thermochemical storage. In: ASME 2009 3rd International Conference on Energy Sustainability. Presented at the ASME 2009 3rd International Conference on Energy Sustainability, ASME, San Francisco, California, USA, pp. 825–830 (2009a). doi:10.1115/ES2009-90289

  • Van Essen, V.M., He, Z., Rindt, C.C.M., Zondag, H.A., Gores, J.C., Bleijendaal, L.P.J., Bakker, M., Schuitema, R., van Helden, W.G.J.: Characterization of MgSO4 hydrate for thermochemical seasonal heat storage. J. Sol. Energy Eng. 131, 041014–041014 (2009b). doi:10.1115/1.4000275

    Google Scholar 

  • Van Helden, W., Hauer, A.: Task 42 - Annex 24, Compact Thermal Energy Storage: Material Development for System Integration—Final Report (Research and Engineering No. IEA SHC/ECES Task 42/24 Final Report), IEA SHC/ECES Task 42/24. International Energy Agency, Europe (2013a)

    Google Scholar 

  • Van Helden, W., Hauer, A.: 2012 Annual report-Feature article on advances in compact thermal energy storage—material development (Research and Engineering No. IEA Solar Heating & Cooling Programme), IEA Solar Heating and Cooling Programme. International Energy Agency, Europe (2013b)

    Google Scholar 

  • Visscher, K., Veldhuis, J.: Comparison of candidate materials for seasonal storage of solar heat through dynamic simulation of building and renewable energy system. In: Buildings Simulations 2005 (The Ninth International Building Performance Simulation Association). Presented at the ECN-RX–06-017, ECN-RX–06-017, Montréal, Canada, pp. 1285–1292 (2005)

    Google Scholar 

  • Wang, K., Wu, J.Y., Wang, R.Z., Wang, L.W.: Effective thermal conductivity of expanded graphite–CaCl2 composite adsorbent for chemical adsorption chillers. Energy Convers. Manage. 47, 1902–1912 (2006). doi:10.1016/j.enconman.2005.09.005

    Google Scholar 

  • Wang, D.C., Li, Y.H., Li, D., Xia, Y.Z., Zhang, J.P.: A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems. Renew. Sustain. Energy Rev. 14, 344–353 (2010). doi:10.1016/j.rser.2009.08.001

    Google Scholar 

  • Wang, L.W., Metcalf, S.J., Critoph, R.E., Thorpe, R., Tamainot-Telto, Z.: Development of thermal conductive consolidated activated carbon for adsorption refrigeration. Carbon 50, 977–986 (2012). doi:10.1016/j.carbon.2011.09.061

    Google Scholar 

  • Wang, L.W., Wang, R.Z., Oliveira, R.G.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13, 518–534 (2009). doi:10.1016/j.rser.2007.12.002

    Google Scholar 

  • Weber, R., Dorer, V.: Long-term heat storage with NaOH. Vacuum 82, 708–716 (2008). doi:10.1016/j.vacuum.2007.10.018

    Google Scholar 

  • Wentworth, W.E., Chen, E.: Simple thermal decomposition reactions for storage of solar thermal energy. Solar Energy 18, 205–214 (1976). doi:10.1016/0038-092X(76)90019-0

    Google Scholar 

  • Wongsuwan, W.: A performance study on a chemical energy storage system using sodium sulphide-water as the working pair. In: 6th IIR Gustav Lorentzen Natural Working Fluids Conference. Glaskow, UK (2004)

    Google Scholar 

  • Wongsuwan, W., Kumar, S., Neveu, P., Meunier, F.: A review of chemical heat pump technology and applications. Appl. Therm. Eng. 21, 1489–1519 (2001). doi:http://dx.doi.org/10.1016/S1359-4311(01)00022-9

    Google Scholar 

  • Wu, A.S., Chou, T.-W.: Carbon nanotube fibers for advanced composites. Mater. Today 15, 302–310 (2012). doi:10.1016/S1369-7021(12)70135-9

    Google Scholar 

  • Xu, S.M., Huang, X.D., Du, R.: An investigation of the solar powered absorption refrigeration system with advanced energy storage technology. Solar Energy 85, 1794–1804 (2011). doi:10.1016/j.solener.2011.04.022

    Google Scholar 

  • Ye, H., Yuan, Z., Li, S., Zhang, L.: Activated carbon fiber cloth and CaCl2 composite sorbents for a water vapor sorption cooling system. Appl. Therm. Eng. (2013). doi:10.1016/j.applthermaleng.2013.10.035

    Google Scholar 

  • Yong, L., Sumathy, K.: Review of mathematical investigation on the closed adsorption heat pump and cooling systems. Renew. Sustain. Energy Rev. 6, 305–338 (2002). doi:10.1016/S1364-0321(02)00010-2

    Google Scholar 

  • Yu, N., Wang, R.Z., Wang, L.W.: Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39, 489–514 (2013). doi:10.1016/j.pecs.2013.05.004

    Google Scholar 

  • Yusta, J.M., De Oliveira-De Jesus, P.M., Khodr, H.M., 2008. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market. Electr. Power Syst. Res. 78, 1764–1772. doi:10.1016/j.epsr.2008.03.012

    Google Scholar 

  • Zhang, G., Tian, C., Shao, S.: Experimental investigation on adsorption and electro-osmosis regeneration of macroporous silica gel desiccant. Appl. Energy 8 (2014). doi:10.1016/j.apenergy.2014.04.087

    Google Scholar 

  • Zondag, A., Kalbasenka, A., van Essen, M.: First studies in reactor concepts for Thermochemical Storage. In: 1st International Conference on Solar Heating, Cooling and Buildings. Presented at the EUROSUN 2008, Proceedings of Eurosun 2008, Lisbon, Portugal, p. 6 (2008)

    Google Scholar 

  • Zondag, H., Kikkert, B., Smeding, S., de Boer, R., Bakker, M.: Prototype thermochemical heat storage with open reactor system. Appl. Energy 109, 360–365 (2013). doi:10.1016/j.apenergy.2013.01.082

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Fopah Lele .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fopah Lele, A. (2016). State-of-Art of Thermochemical Heat Storage Systems. In: A Thermochemical Heat Storage System for Households. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41228-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41228-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41227-6

  • Online ISBN: 978-3-319-41228-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics