Skip to main content

Evaluation of Higher Order Moments and Isotropy in the Wake of a Wind Turbine Array

  • Chapter
  • First Online:
Whither Turbulence and Big Data in the 21st Century?

Abstract

Hot-wire measured signals are analyzed using the third and fourth order statistical moments as well as the energy spectra and structure functions in the wake of a model wind turbine array. The skewness experiences sharp excursions, away from a Gaussian behavior, due to the presence of the turbine rotor. Kurtosis is maximized at the top tip, hub, and bottom tip of the turbine. A below Gaussian kurtosis level in the probability density function (pdf) results for the streamwise direction moving away from the wall, while the hub and top tip of the pdf converge to a Gaussian behavior. At one diameter downstream of the turbine, the wall-normal kurtosis at the top tip, hub region, and slightly above the wall positions shows an increase in comparison to the other wall-normal locations. Similar peaks in wall-normal kurtosis are found five diameters and one diameter downstream of the turbine in near-wall region. These peaks converge to Gaussian behavior moving away from the wall. Energy spectra and structure functions indicate that the inertial subrange extends near the top tip in the near-wake and away from the wall in the far-wake. Utilizing the cross-spectra and mixed structure function, anisotropic behavior is held for all near- and far-wake region with exception at some small scales. Based on the structure function ratios of wall-normal and streamwise velocities, the wake is highly anisotropic for all locations except at top tip and the majority of scales in the near-wake. Contrary to this result, the ratio between the wall-normal and streamwise spectrum displays a defined range of scales behaving isotropically at most locations, the only exception being at hub height. In far-wake, the structure function ratio and spectral ratio show a significant reduction in anisotropic behavior at larger scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GWEC, Global wind energy outlook 2012, November, 2012

    Google Scholar 

  2. J. Meyers, C. Meneveau, Optimal turbine spacing in fully developed wind-farm boundary layers. Wind Energy 15, 305–317 (2012)

    Article  Google Scholar 

  3. L.P. Chamorro, F. Porté-Agel, Turbulent flow inside and above a wind farm: a wind-tunnel study. Energies 4, 1916–1936 (2011)

    Article  Google Scholar 

  4. M.S. Melius, M. Tutkun, R.B. Cal, Solution of the Fokker-Planck equation in a wind turbine array boundary layer. Phys. D 280–281, 14–21 (2014)

    Article  MathSciNet  Google Scholar 

  5. R.B. Cal, J. Lebron, L. Castillo, H.S. Kang, C. Meneveau, Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer. J. Renew. Sustain. Energy 2, 013106, 1–25 (2010)

    Google Scholar 

  6. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  7. T. Sedat, Statistical Approach to Wall Turbulence (Wiley, Hoboken, 2013)

    Google Scholar 

  8. L.T. DeCarlo, On the meaning and use of kurtosis. Psychol. Methods 2 (3), 292 (1997)

    Google Scholar 

  9. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk. SSSR 30, 299–303 (1941); A.N. Kolmogorov, Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk. SSSR 32, 19–21 (1941)

    Google Scholar 

  10. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, 1975), 875 pp.

    Google Scholar 

  11. L. Mydlarski, Z. Warhaft, On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331–368 (1996)

    Article  Google Scholar 

  12. M. Chamecki, N.L. Dias, The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Q. J. R. Meteorol. Soc. 130, 2733–2752 (2004)

    Article  Google Scholar 

  13. J.C. Kaimal, J.C. Wyngaard, Y. Izumi, O.R. Coté, Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98, 563–589 (1972)

    Article  Google Scholar 

  14. P. Mestayer, Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475–503 (1982)

    Article  Google Scholar 

  15. S. Kurien, K.R. Sreenivasan, Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence. Phys. Rev. E 62 (2), 1–7 (2000)

    Article  MathSciNet  Google Scholar 

  16. V.I. Tatarski, Wave Propagation in a Turbulent Medium, translated by R.A. Silverman (McGraw Hill, New York, 1961)

    Google Scholar 

  17. C. Van Atta, Local isotropy of the smallest scales of turbulent scalar and velocity fields. Proc. R. Soc. Lond. 434, 139–147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. R.A. Antonia, B.R. Pearson, Low- order velocity structure functions in relatively high Reynolds number turbulence. Europhys. Lett. 48 (2), 163–1 (1999)

    Article  Google Scholar 

  19. K.R. Sreenivasan, R.A. Antonia, D. Britz, Local isotropy and large structures in a heated turbulent jet. J. Fluid Mech. 94, 745–775 (1979)

    Article  Google Scholar 

  20. R.A. Antonia, M.R. Raupach, Spectral scaling in a high Reynolds number laboratory boundary layer. Bound. Lay. Meteorol. 65, 289–306 (1993)

    Article  Google Scholar 

  21. G.G. Katul, M.B. Parlange, J.D. Albertson, V.R. Chu, Local isotropy and anisotropy in the sheared and heated atmospheric surface layer. Bound. Lay. Meteorol. 72, 123–148 (1995)

    Article  Google Scholar 

  22. N. Hamilton, C. Meneveau, R.B. Cal, H.-S. Kang, Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer. J. Renew. Sustain. Energy 4, 063105 (2012)

    Article  Google Scholar 

  23. M. Melius, M. Tutkun, R.B. Cal. Identification of Markov process within a wind turbine array boundary layer. J. Renew. Sustain. Energy 6 (2), 023121 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is in part funded by the National Science Foundation (NSF - CBET - 1034581). Tutkun′s work is financed by the Research Council of Norway under the FRINATEK program (project #231491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Bayoán Cal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ali, N., Aseyev, A.S., Melius, M.S., Tutkun, M., Cal, R.B. (2017). Evaluation of Higher Order Moments and Isotropy in the Wake of a Wind Turbine Array. In: Pollard, A., Castillo, L., Danaila, L., Glauser, M. (eds) Whither Turbulence and Big Data in the 21st Century?. Springer, Cham. https://doi.org/10.1007/978-3-319-41217-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41217-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41215-3

  • Online ISBN: 978-3-319-41217-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics