Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 727 Accesses

Abstract

The Wentzel–Kramers–Brillouin (WKB) method has been used to address a variety of problems in physics and at the interface of biosciences, from problems in optics, quantum mechanics and General Relativity to estimating the lifetime of a disease outbreak. In this chapter we explore the mathematical basis of the method in its application to stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This was the approximation scheme used by physicists to investigate wave-scattering phenomena in problems such as optics and quantum mechanics.

  2. 2.

    The quantity \(M_k\) is found by enumerating the paths with k backwards steps. We have not found a general expression for this number.

  3. 3.

    We assume that this boundary is ‘regular’, i.e. the probability of reaching the boundary is non-zero and the expected time to reach the boundary is finite [29].

  4. 4.

    We could expand the reactions rates in further powers of \(\Omega \), such that \(T^r_{\Omega x} = \Omega f_r(x) + g_r(x) + h_r(x)/\Omega +\dots \), as described in Ref. [19]. However in this section we only consider the leading-order contributions.

  5. 5.

    The absorbing state can be removed by setting \(T^-_1=0\).

  6. 6.

    Pierre François Verhulst (1804–1849).

  7. 7.

    Analytical solutions are available for the two-type branching process [39], but, in general, such a description is usually lacking.

  8. 8.

    Leonhard Euler (1707–1783) and Gisiro Maruyama (1916–1986).

  9. 9.

    Lars Onsager (1903–1976) and Stefan Machlup (1927–2008).

References

  1. G. Green, On the motion of waves in a variable canal of small depth and width. Trans. Cambridge Phil. Soc. 6, 457 (1837)

    ADS  Google Scholar 

  2. J. Liouville, Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. J. Math. Pure Appl. 2, 16 (1837)

    Google Scholar 

  3. H. Jeffreys, On certain approximate solutions of linear differential equations of the second order. Proc. London Math. Soc. 2, 428 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Phys. 38, 518 (1926)

    Article  ADS  MATH  Google Scholar 

  5. H.A. Kramers, Wellenmechanik und halbzahlige Quantisierung. Z. Phys. 39, 828 (1926)

    Article  ADS  MATH  Google Scholar 

  6. L. Brillouin, La mécanique ondulatoire de Schrödinger: Une méthode générale de résolution par approximations successives. C. R. Acad. Sci. Paris 183, 24 (1926)

    MATH  Google Scholar 

  7. R. Kubo, K. Matsuo, K. Kitahara, Fluctuation and relaxation of macrovariables. J. Stat. Phys 9, 51 (1973)

    Article  ADS  Google Scholar 

  8. R. Graham, T. Tél, Existence of a potential for dissipative dynamical systems. Phys. Rev. Lett. 52, 9 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Gang, Stationary solution of master equations in the large-system-size limit. Phys. Rev. A 36, 5782 (1987)

    Article  ADS  Google Scholar 

  10. M. Dykman, E. Mori, J. Ross, P. Hunt, Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. 100, 5735 (1994)

    Article  ADS  Google Scholar 

  11. P. Hänggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. B. Gaveau, M. Moreau, J. Tóth. Master Equations and Path-integral Formulation of Variational Principles for Reactions, eds. by S. Sieniutycz, H. Farkas. Variational and Extremum Principles in Macroscopic Systems (Elsevier, Amsterdam, 2005)

    Google Scholar 

  14. C. Escudero, A. Kamenev, Switching rates of multi-step reactions. Phys. Rev. E 79, 041149 (2009)

    Article  ADS  Google Scholar 

  15. M. Assaf, E. Roberts, Z. Luthey-Schulten, Determining the stability of genetic switches: explicitly accounting for mRNA noise. Phys. Rev. Lett. 106, 248102 (2011)

    Article  ADS  Google Scholar 

  16. V. Elgart, A. Kamenev, Rare event statistics in reaction-diffusion systems. Phys. Rev. E 70, 041106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. D.A. Kessler, N.M. Shnerb, Extinction rates for fluctuation-induced metastabilities: a real-space WKB approach. J. Stat. Phys. 127, 861 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Kamenev, B. Meerson, Extinction of an infectious disease: a large fluctuation in a nonequilibrium system. Phys. Rev. E 77, 061107 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Assaf, B. Meerson, Extinction of metastable stochastic populations. Phys. Rev. E 81, 021116 (2010)

    Article  ADS  Google Scholar 

  20. L. Billings, L. Mier-Y-Teran-Romero, B. Lindley, I.B. Schwartz, Intervention-based stochastic disease eradication. PLoS ONE 8, e70211 (2013)

    Article  ADS  Google Scholar 

  21. P. Ashcroft, F. Michor, T. Galla, Stochastic tunneling and metastable states during the somatic evolution of cancer. Genetics 199, 1213 (2015)

    Article  Google Scholar 

  22. M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  23. H. Touchette, The large deviation approach to statistical mechanics. Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. B. Meerson, P.V. Sasorov, Noise-driven unlimited population growth. Phys. Rev. E 78, 060103 (2008)

    Article  ADS  Google Scholar 

  25. O. Ovaskainen, B. Meerson, Stochastic models of population extinction. Trends Ecol. Evol. 25, 643 (2010)

    Article  Google Scholar 

  26. A.J. Black, A.J. McKane, WKB calculation of an epidemic outbreak distribution. J. Stat. Mech. 2011, P12006 (2011)

    Article  Google Scholar 

  27. P. Collet, S. Martínez, J. San Martin, Quasi-Stationary Distributions (Springer, Berlin, 2013)

    Google Scholar 

  28. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  29. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 2007)

    MATH  Google Scholar 

  30. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  31. C.W. Gardiner, Handbook of Stochastic Methods (Springer, New York, 2009)

    MATH  Google Scholar 

  32. N. Goel, N. Richter-Dyn, Stochastic Models in Biology (Academic Press, New York, 1974)

    Google Scholar 

  33. P. Hänggi, H. Grabert, P. Talkner, H. Thomas, Bistable systems: master equation versus Fokker-Planck modeling. Phys. Rev. A 29, 371 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  34. V. Elgart, A. Kamenev, Classification of phase transitions in reaction-diffusion models. Phys. Rev. E 74, 041101 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Assaf, A. Kamenev, B. Meerson, Population extinction in a time-modulated environment. Phys. Rev. E 78, 041123 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Assaf, A. Kamenev, B. Meerson, Population extinction risk in the aftermath of a catastrophic event. Phys. Rev. E 79, 011127 (2009)

    Article  ADS  Google Scholar 

  37. V. Méndez, M. Assaf, D. Campos, W. Horsthemke, Stochastic dynamics and logistic population growth. Phys. Rev. E 91, 062133 (2015)

    Article  ADS  Google Scholar 

  38. P.F. Verhulst, Notice sur la loi que la population suit dans son accroissement. Correspondance Mathématique et Physique 10, 113 (1838)

    Google Scholar 

  39. T. Antal, P. Krapivsky, Exact solution of a two-type branching process: models of tumor progression. J. Stat. Mech. 2011, P08018 (2011)

    Article  Google Scholar 

  40. L.D. Landau, E.M. Lifshitz, Mechanics, vol. 1 (Pergamon Press, Oxford, 1976)

    MATH  Google Scholar 

  41. T. Brett, T. Galla, Stochastic processes with distributed delays: chemical Langevin equation and linear-noise approximation. Phys. Rev. Lett. 110, 250601 (2013)

    Article  ADS  Google Scholar 

  42. D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716 (2001)

    Article  ADS  Google Scholar 

  43. L. Onsager, S. Machlup, Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M. Heymann, E. Vanden-Eijnden, The geometric minimum action method: a least action principle on the space of curves. Comm. Pure Appl. Math. 61, 1052 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  46. A.I. Chernykh, M.G. Stepanov, Large negative velocity gradients in Burgers turbulence. Phys. Rev. E 64, 026306 (2001)

    Article  ADS  Google Scholar 

  47. I. Lohmar, B. Meerson, Switching between phenotypes and population extinction. Phys. Rev. E 84, 051901 (2011)

    Article  ADS  Google Scholar 

  48. D.M. Roma, R.A. O’Flanagan, A.E. Ruckenstein, A.M. Sengupta, R. Mukhopadhyay, Optimal path to epigenetic switching. Phys. Rev. E 71, 011902 (2005)

    Article  ADS  Google Scholar 

  49. S. Bhattacharya, Q. Zhang, M.E. Andersen, A deterministic map of Waddington’s epigenetic landscape for cell fate specification. BMC Syst. Biol. 5, 85 (2011)

    Article  Google Scholar 

  50. C. Lv, X. Li, F. Li, T. Li, Constructing the energy landscape for genetic switching system driven by intrinsic noise. PLoS ONE 9, e88167 (2014)

    Article  ADS  Google Scholar 

  51. M. Lu, J. Onuchic, E. Ben-Jacob, Construction of an effective landscape for multistate genetic switches. Phys. Rev. Lett. 113, 078102 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ashcroft .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashcroft, P. (2016). The WKB Method: A User-Guide. In: The Statistical Physics of Fixation and Equilibration in Individual-Based Models. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-41213-9_6

Download citation

Publish with us

Policies and ethics