Skip to main content

An Overview of the Phase-Field Method and Its Formalisms

  • Chapter
  • First Online:
Programming Phase-Field Modeling

Abstract

A microstructure can be described as the spatial arrangement of the phases and possible defects that have different compositional and/or structural character (for example, the regions composed of different crystal structures and having different chemical compositions, grains of different orientations, domains of different structural variants, and domains of different electric or magnetic polarizations). The size, shape, volume fraction, and spatial arrangement of these microstructural features determine the overall properties of any type of multiphase and/or multicomponent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cahn JW, Hilliard JE (1958) Free energy of a non-uniform system. I. Interfacial energy. J Chem Phys 28:258

    Article  Google Scholar 

  2. Cahn JW (1961) On spinodal decomposition. Acta Metall 9:795

    Article  Google Scholar 

  3. Allen SM, Cahn JW (1972) Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall 20:423

    Article  Google Scholar 

  4. Allen SM, Cahn JW (1973) A correction to the ground state of fcc binary ordered alloys with first and second neighbor pairwise interactions. Scr Metall 7:1261

    Article  Google Scholar 

  5. Landau LD, Khalatikow IM (1963) The selected works of L.D. Landau (English translation). Pergamon, Oxford

    Google Scholar 

  6. Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase-field model for isothermal transformations in binary alloys. Phys Rev A 45:7424

    Article  Google Scholar 

  7. Wheeler AA, Boettinger WJ, McFadden GB (1993) Phase-field model of solute trapping during solidification. Phys Rev E 47:1893

    Article  Google Scholar 

  8. Wheeler AA, Boettinger WJ, McFadden GB (1996) Phase-field model of a eutectic alloy. Proc R Soc Lond Ser A 452:495

    Article  Google Scholar 

  9. Moelans N (2011) A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems. Acta Mater 59:1077

    Article  Google Scholar 

  10. Langer JS (1986) Models of pattern formation in first-order phase transitions. In: Grinstein G, Mazenko G (eds) Directions in condensed matter physics. World Scientific, Singapore, p 165

    Chapter  Google Scholar 

  11. Fix GJ (1983) Phase field models for free boundary problems. In: Fasano A, Primicerio A (eds) Free boundary problems: theory and applications, vol 2. Pitman, Boston, MA, p 580

    Google Scholar 

  12. Collins JB, Levin H (1985) Diffuse interface model of diffusion-limited crystal growth. Phys Rev B 31:6119

    Article  Google Scholar 

  13. Caginalp G, Fife P (1986) Phase-field methods for interfacial boundaries. Phys Rev B 33:7792

    Article  Google Scholar 

  14. Caginalp G, Fife P (1987) Higher order phase-field models and detailed anisotropy. Phys Rev B 34:4940

    Article  Google Scholar 

  15. Caginalp G, Jones J (1995) A derivation and analysis of phase field models of thermal alloys. Ann Phys 237:66

    Article  Google Scholar 

  16. Caginalp G, Socolovsky EA (1991) Computation of sharp phase boundaries by spreading: the planar and spherically symmetric cases. J Comput Phys 95:85

    Article  Google Scholar 

  17. Penrose O, Fife PC (1990) Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43:44

    Article  Google Scholar 

  18. Penrose O, Fife PC (1993) On the relation between the standard phase-field model and a ‘thermodynamically consistent’ phase-field model. Physica D 69:107

    Article  Google Scholar 

  19. Kobayashi R (1992) Simulations of three dimensional dendrites. In: Kai S (ed) Pattern formation in complex dissipative system. World Scientific, Singapore, p 121

    Google Scholar 

  20. Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Physica D 63:410

    Article  Google Scholar 

  21. Kobayashi R (1994) Numerical approach to three-dimensional dendritic solidification. Exp Math 3:59

    Article  Google Scholar 

  22. Chen LQ, Yang W (1994) Computer simulation of the domain dynamics of quenched system with a large number of non-conserved order parameters: the grain-growth kinetic. Phys Rev B 50:15752

    Article  Google Scholar 

  23. Morin B, Elder KR, Sutton M, Grant M (1995) Model of the kinetics of polymorphous crystallization. Phys Rev Lett 75:2156

    Article  Google Scholar 

  24. Kobayashi R, Warren JA, Carter WC (2000) A continuum model of grain boundaries. Phys D: Nonlinear Phenom 140:141

    Article  Google Scholar 

  25. Steinbach I, Pezzolla F, Nestler B, Seeβelberg M, Prieler R, Schmitz GJ, Rezende JLL (1996) A phase-field concept for multiphase systems. Physica D 94:135

    Article  Google Scholar 

  26. Steinbach I, Pezzolla F (1999) A generalized field method for multiple transformations using interface fields. Physica D 134:385

    Article  Google Scholar 

  27. Tiaden J, Nestler B, Diepers HJ, Steinbch I (1998) The multiphase-field model with an integrated concept for modeling solute diffusion. Physica D 115:73

    Article  Google Scholar 

  28. Kim SG, Kim WT, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60:7186

    Article  Google Scholar 

  29. Kim SG (2007) A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater 55:4391

    Article  Google Scholar 

  30. Grafe U, Bottger B, Tiaden J, Fries SG (2000) Coupling of multicomponent thermodynamic databases to a phase-field model: application to solidification and solid state transformations of super alloys. Scr Mater 42:1179

    Article  Google Scholar 

  31. Nestler B, Wheeler AA (2000) A multiphase-field model of eutectic and peritectic alloys: numerical simulations of growth structures. Physica D 138:114

    Article  Google Scholar 

  32. Nestler B, Garcke H, Stinner B (2005) Multicomponent alloy solidification: phase-field modeling and simulations. Phys Rev E 71:041609

    Article  Google Scholar 

  33. Garcke H, Nestler B, Stinner B (2004) A diffuse interface model for alloys with multiple components and phases. J SIAM Appl Math 64:775

    Article  Google Scholar 

  34. Eiken J, Boettger B, Steinbach I (2006) Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E 73:0066122

    Article  Google Scholar 

  35. Qin RS, Wallach ER (2003) A phase-field model coupled with thermodynamic database. Acta Mater 51:6199

    Article  Google Scholar 

  36. Qin RS, Wallach ER, Thomson RC (2005) A phase-field model for the solidification of multicomponent and multiphase alloys. J Crystal Growth 279:163

    Article  Google Scholar 

  37. Steinbach I, Boettger B, Eiken J, Warnken N, Fries SG (2007) Calphad and phase-field modeling: a successful liaison. J Phase Equilib Diffus 28:101

    Article  Google Scholar 

  38. Cogswell DA, Carter WC (2011) Thermodynamic phase-field model for microstructure with multiple components and phases: the possibility of metastable phases. Phys Rev E 83:061602

    Article  Google Scholar 

  39. Chen LQ, Hu SY (2004) Phase-field method applied to strain-dominated microstructure evolution during solid-state phase transformations. In: Raabe D, Roters F, Barlat F, Chen LQ (eds) Continuum scale simulation of engineering materials. Fundamentals-microstructures-process applications, Wiley

    Google Scholar 

  40. Hu SY, Chen LQ (2001) A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater 49:1879

    Article  Google Scholar 

  41. Biner SB, Hu SY (2009) Simulation of damage evolution in composites: A phase-field model. Acta Mater 57:2088

    Article  Google Scholar 

  42. Gururajan MP, Abinandanan TA (2007) Phase-field study of precipitation rafting under uniaxial stress. Acta Mater 55:5015

    Article  Google Scholar 

  43. Lifshitz EM, Pitaevskii LP (1980) Statistical physics. Part I, Landau and Lifshitz course of theoretical physics. Pergamon Press, Oxford

    Google Scholar 

  44. Aaronson HI, Lee JK (1975) Lectures on the theory of phase transformations. TMS, New York

    Google Scholar 

  45. Simmons JP, Shen C, Wang Y (2000) Phase-field modeling of simultaneous nucleation and growth by explicitly incorporating nucleation events. Scr Mater 43:935

    Article  Google Scholar 

  46. Simmons JP, Wen Y, Shen C, Wang Y (2004) Microstructural development involving nucleation and growth phenomena with the phase-field method. Mater Sci Eng, A 365:136

    Article  Google Scholar 

  47. Heo TW, Zhang L, Du Q, Chen LQ (2010) Incorporating diffuse interface nuclei phase-field simulation. Scr Mater 63:8

    Article  Google Scholar 

  48. Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113

    Article  Google Scholar 

  49. Loginova IS, Singer HM (2008) The phase-field technique for modeling multi materials. Rep Prog Phys 71:106501

    Article  Google Scholar 

  50. Stainbach I (2009) Topical review: phase-field models in material science. Model Simul Mater Sci Eng 17:073001

    Article  Google Scholar 

  51. Wang Y, Li J (2010) Overview: 150, phase-field modeling of defects and deformation. Acta Mater 58:1212

    Article  Google Scholar 

  52. Provates N, Elder K (2010) Phase-Field methods in materials science and engineering. Wiley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biner, S.B. (2017). An Overview of the Phase-Field Method and Its Formalisms. In: Programming Phase-Field Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-41196-5_1

Download citation

Publish with us

Policies and ethics