Skip to main content

Optical Fibers

  • Chapter
  • First Online:
Applications of Chalcogenides: S, Se, and Te

Abstract

Chalcogen-based materials in glassy form are popular infrared (IR) fiber materials due to their flexible stoichiometry leading to a broad glass forming region and their ability to be readily drawn into fiber with a broadband IR transmission. Depending upon composition, the sulfide, selenide, and telluride-based fibers transmit between about 0.8 and 7 μm, 1 and 10 μm, and 2 and 12 μm, respectively. The low phonon energy of chalcogenide glasses (~300–450 cm−1) compared to silica glass (~1100 cm−1) and fluoride glass (~560 cm−1) allows many IR transitions that are quenched in silica and fluoride glass to be active. The low phonon energy of the chalcogenide glasses (ChGs) also results in a wide infrared transmission window that allows low loss transmission in the mid-wave infrared (MWIR) and long-wave Infrared (LWIR) bands. In addition, the large refractive index and high degree of covalent bonding in chalcogenide glass results in oscillator strengths and radiative transition probabilities greater than in other host materials. In particular, ChGs doped with rare earth elements (Er3+, Pr3+, Dy3+, and Tb3+) are ideal candidates for fiber lasers and amplifiers in MWIR and LWIR regions. Refractive index of sulfur-based materials such as arsenic sulfide (As2S3) can be easily tailored by changing the relative amounts of arsenic and sulfur, thus making it the most popular one for application as optic fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Nishihara, M. Haruna, T. Suhara, in Optical and Electro-optical Engineering Series, ed. by R.E. Fisher, W.E. Smith, vol. 215 (McGraw-Hill, New York, 1989), p. 151

    Google Scholar 

  2. N.S. Kapany, R.J. Simms, Recent developments of infrared fiber optics. Infrared Phys. 5, 69–75 (1965)

    Article  Google Scholar 

  3. Z.U. Borisova, Glassy Semiconductors (Plenum Press, New York, 1981)

    Book  Google Scholar 

  4. J.S. Sanghera, J. Heo, J.D. Mackenzie, J. Non-Cryst. Solids 103, 155 (1988)

    Article  Google Scholar 

  5. J.S. Sanghera, V.Q. Nguyen, P.C. Pureza, F.H. Kung, R. Miklos, I.D. Aggarwal, J. Lightwave Technol. 12, 737 (1994)

    Article  Google Scholar 

  6. E. Snitzer, K. Wei, US Patent 5,379, 1995, 149

    Google Scholar 

  7. B. Aitken, M.A. Newhouse, US Patent 5,389, 1995, 584

    Google Scholar 

  8. D.W. Hewak, R.S. Deol, J. Wang, G. Wylangowski, J.A. Mederios Neto, B.N. Samson, R.I. Laming, W.S. Brocklesby, D.N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M.D. Baro, Electron. Lett. 29, 237 (1993)

    Article  Google Scholar 

  9. H. Tawarayama, E. Ishikawa, K. Itoh, H. Aoki, H. Yanagita, K. Okada, K. Yamanaka, Y. Matsuoka, H. Toratani, Optical Fiber Conference, Victoria, Canada, PD1–1 (Optical Society of America, Washington, DC, 1997)

    Google Scholar 

  10. V. Krasteva, A. Yurkina, D. Machewirth, G. Sigel Jr., J. Non-Cryst. Solids 213–214, 304 (1997)

    Article  Google Scholar 

  11. D.A. Turnbull, S.Q. Gu, S.G. Bishop, J. Appl. Phys. 80, 2436 (1996)

    Article  Google Scholar 

  12. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Wekhaven, D. O’Day, Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371, 416–418 (1994)

    Article  Google Scholar 

  13. J. Hetch, City of Lights (Oxford University Press, New York, 1999)

    Google Scholar 

  14. J.A. Harrington, Infrared Fibers and Their Applications (SPIE Press, Bellingham, WA, 2004)

    Book  Google Scholar 

  15. P.A. Thielen, Modeling of a mid-IR chalcogenide fiber Raman laser. Opt. Express 11(24), 3284 (2003)

    Article  Google Scholar 

  16. S.F. Carter, M.W. Moore, D. Szebesta, D. Ransom, P.W. France, Low loss fluoride fibre by reduced pressure casting. Electron. Lett. 26, 2115–2117 (1990)

    Article  Google Scholar 

  17. R. Nubling, J.A. Harrington, Optical properties of single-crystal sapphire fibers. Appl. Opt. 36, 5934–5940 (1997)

    Article  Google Scholar 

  18. J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, T. Yamagishi, Recent advances and trends in chalcogenide glass fiber technology: a review. J. Non-Cryst. Solids 140, 199–208 (1992)

    Article  Google Scholar 

  19. V. Artjushenko, V. Ionov, K.I. Kalaidjian, A.P. Kryukov, E.F. Kuzin, A.A. Lerman, A.S. Prokhorov, E.V. Stepanov, K. Bakhshpour, K.B. Moran, W. Neuberger, Infrared fibers: power delivery and medical applications. Proc. SPIE 2396, 25–36 (1995)

    Article  Google Scholar 

  20. Y. Matsuura, T. Abel, J.A. Harrington, Optical properties of small-bore hollow glass waveguides. Appl. Opt. 34, 6842–6847 (1995)

    Article  Google Scholar 

  21. J.A. Harrington, “Infrared Fiber Optics” OSA Handbook, vol IV (McGraw-Hill, USA, 2001), p. 14.2. ISBN 0-07-136456-0

    Google Scholar 

  22. J.S. Sanghera, L. Brandon Shaw, I.D. Aggarwal, Applications of chalcogenide glass optical fiber. C.R. Chimie 5, 873–883 (2002)

    Article  Google Scholar 

  23. J.S. Sanghera, I.D. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications: a review. J. Non-Cryst. Solids 256–257, 6–16 (1996)

    Google Scholar 

  24. J.S. Sanghera, I.D. Aggarwal, Infrared Fiber Optics (CRC Press Inc., Boca Raton, FL, 1998)

    Google Scholar 

  25. Y. Kanamori, Y. Terunuma, T. Miyashita, Preparation of chalcogenide optical fiber. Rev. Electrical Comm. Lab 32, 469–477 (1984)

    Google Scholar 

  26. L.E. Busse, J.A. Moon, J.S. Sanghera, I.D. Aggarwal, Laser Focus World 32, 143 (1996)

    Google Scholar 

  27. L. Busse, J. Moon, J.S. Sanghera, I.D. Aggarwal, J. Harrington, K.K. Lum, Proceedings of the 1995 IRIS Speciality Group on Materials (Erim, Ann Arbor, MI, 1995), p. 237

    Google Scholar 

  28. I.D. Aggarwal, L.E. Busse, L.B. Shaw, B. Cole, J.S. Sanghera, in Proceedings of the Diode Laser Technology Review, Albuquerque, NM, 1998

    Google Scholar 

  29. J.S. Sanghera, I.D. Aggarwal, in Proceedings of the 18th International Congress on Glass, San Francisco, CA, 5–10 July 1998

    Google Scholar 

  30. P. Melling, Commercial Literature, Rempec Inc

    Google Scholar 

  31. J. Heo, M. Rodrigues, S. Saggese, G.H. Sigel Jr., Appl. Opt. 30, 3944 (1991)

    Article  Google Scholar 

  32. J.S. Sanghera, F.H. Kung, L.E. Busse, P.C. Pureza, I.D. Aggarwal, J. Am. Ceram. Soc. 78, 2198 (1995)

    Article  Google Scholar 

  33. X.H. Zhang, M.V. Duhamel, H.L. Ma, C. Blanchetiere, J. Lucas, J. Non-Cryst. Solids 161, 547 (1993)

    Article  Google Scholar 

  34. M. Druy, in Infrared Fiber Optics, ed. by J.S. Sanghera, I.D. Aggarwal (CRC, Boca Raton, FL, 1998). ch. 8

    Google Scholar 

  35. J.S. Sanghera, I.D. Aggarwal, L. Busse, P. Pureza, V. Nguyen, R. Miklos, F. Kung, R. Mossadegh, SPIE 2396, 71 (1995)

    Google Scholar 

  36. M. Saito, Technology digest first workshop on optical fiber sensors, Jpn. Soc. Appl. Phys. 113 (1985)

    Google Scholar 

  37. G. Nau, F. Bucholtz, K.J. Ewing, S.T. Vohra, J.S. Sanghera, I.D. Aggarwal, SPIE 2883, 682 (1996)

    Google Scholar 

  38. J.S. Sanghera, G. Nau, P.C. Pureza, I.D. Aggarwal, US Patent 5,525,800, 1996

    Google Scholar 

  39. B. Rigas, P.T.T. Wong, Cancer Res. 52, 84 (1992)

    Google Scholar 

  40. T. Ueda, K. Yamad, T. Sugita, J. Eng. Ind. 114, 317 (1992)

    Google Scholar 

  41. N.S. Kapany, R.J. Simms, Infrared Phys. 5, 69 (1996)

    Article  Google Scholar 

  42. M. Saito, M. Takizawa, S. Sakuragi, F. Tanei, Appl. Opt. 24(9), 2304 (1985)

    Article  Google Scholar 

  43. J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, H. Stone, Appl. Phys. Lett. 59, 2639 (1991)

    Article  Google Scholar 

  44. H. Suto, Infrared Phys. Technol. 38, 93 (1997)

    Article  Google Scholar 

  45. M.K. Hong, S. Erramilli, P. Huie, G. James, A. Jeung, SPIE 2863, 54 (1997)

    Google Scholar 

  46. D.T. Schaafsma, R. Mossadegh, J.S. Sanghera, I.D. Aggarwal, J.M. Gilligan, N.H. Tolk, M. Luce, R. Generosi, P. Perfetti, A. Cricenti, G. Margaritondo, Ultramicroscopy 77, 77 (1999)

    Article  Google Scholar 

  47. J.S. Sanghera, L.B. Shaw, L.E. Busse, D. Talley, I.D. Aggarwal, SPIE, Infrared transmitting fiber optics for biomedical applications. Proceedings Photonics West, San Diego, CA, SPIE 3596, 178 (1999)

    Google Scholar 

  48. D.T. Schaafsma, J.A. Moon, J.S. Sanghera, I.D. Aggarwal, J. Lightwave Technol. 15(12), 2242 (1997)

    Article  Google Scholar 

  49. T. Schweizer, B.N. Samson, R.C. Moore, D.W. Hewak, D.N. Payne, Electron. Lett. 33(5), 414 (1997)

    Article  Google Scholar 

  50. A. Mori, Y. Ohishi, T. Kanamori, S. Sudo, Appl. Phys. Lett. 70(10), 1230 (1997)

    Article  Google Scholar 

  51. L.B. Shaw, B.J. Cole, J.S. Sanghera, I.D. Aggarwal, D.T. Schaafsma, Optical Fiber Communications (Paper WG8, San Jose, CA, 1998)

    Google Scholar 

  52. L.B. Shaw, D.T. Schaafsma, B.J. Cole, B. Harbison, J.S. Sanghera, I.D. Aggarwal, SPIE 3368, 42 (1998)

    Google Scholar 

  53. M. Asobe, T. Ohara, I. Yokohama, T. Kaino, Electron. Lett. 32, 1611 (1996)

    Article  Google Scholar 

  54. M. Asobe, T. Kanamori, K. Kubodera, IEEE Photon. Technol. Lett. 4, 362 (1992)

    Article  Google Scholar 

  55. M.T. de Aruajo, M.V.D. Vermelho, A.S. Gouveia-Net, A.S.B. Sombra, J.A. Medeiros Neto, IEEE Photon. Technol. Lett. 8, 821 (1996)

    Article  Google Scholar 

  56. R. Reisfeld, A. Bornstein, Chem. Phys. Lett. 47, 194 (1997)

    Article  Google Scholar 

  57. A. Bornstein, R. Reisfeld, J. Non-Cryst. Solids 50, 23 (1982)

    Article  Google Scholar 

  58. R. Reisfeld, A. Bornstein, J. Non-Cryst. Solids 27, 143 (1978)

    Article  Google Scholar 

  59. R. Reisfeld, Ann. Chim. Fr. 7, 147 (1982)

    Google Scholar 

  60. C.C. Ye, D.W. Hewak, M. Hempstead, B.N. Samson, D.N. Payne, J. Non-Cryst. Solids 208, 56 (1996)

    Article  Google Scholar 

  61. J. Moon, B.B. Harbison, J.S. Sanghera, I.D. Aggarwal, in Proc. Photonics’ 96, Madras, India, 9–13 December 1996

    Google Scholar 

  62. Y.B. Shin, W.Y. Cho, J. Heo, J. Non-Cryst. Solids 208, 29 (1996)

    Article  Google Scholar 

  63. Y.B. Shin, J.N. Jang, J. Heo, Opt. Quant. Electron. 27, 379 (1995)

    Article  Google Scholar 

  64. L.B. Shaw, B.H. Harbison, B. Cole, J.S. Sanghera, I.D. Aggarwal, Opt. Express 1, 87 (1997)

    Article  Google Scholar 

  65. T. Schweizer, D.W. Hewak, B.N. Samson, D.N. Payne, J. Lumin. 72–74, 419 (1997)

    Article  Google Scholar 

  66. P.F. Moulton et al., Tm-doped fiber lasers: fundamentals and power scaling. IEEE J. Sel. Top. Quant. Electron. 15(1), 85–92 (2009)

    Article  Google Scholar 

  67. D. Faucher et al., 20 W passively cooled single-mode all-fiber laser at 2.8 m. Opt. Lett. 36(7), 1104–1106 (2011)

    Article  Google Scholar 

  68. D. Faucher et al., Erbium-doped all-fiber laser at 2.94 m. Opt. Lett. 34(21), 3313–3315 (2009)

    Article  Google Scholar 

  69. D. Hudson et al., 1 W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser. Electron. Lett. 47(17), 985–986 (2011)

    Article  Google Scholar 

  70. T. Hu, D.D. Hudson, S.D. Jackson, Actively Q-switched 2.9 m Ho3+Pr3+-doped fluoride fiber laser. Opt. Lett. 37(11), 2145–2147 (2012)

    Article  Google Scholar 

  71. C. Carbonnier, H. Többen, U.B. Unrau, Room temperature CW fibre laser at 3.22 m. Electron. Lett. 34(9), 893–894 (1998)

    Article  Google Scholar 

  72. H. Többen, Room temperature CW fibre laser at 3.5 m in Er3+-doped ZBLAN glass. Electron. Lett. 28(14), 1361–1362 (1992)

    Article  Google Scholar 

  73. J. Schneider, C. Carbonnier, U.B. Unrau, Characterization of a Ho3+-doped fluoride fiber laser with a 3.9 m emission wavelength. Appl. Opt. 36(33), 8595–8600 (1997)

    Article  Google Scholar 

  74. S.D. Jackson, Nat. Photon. 6, 423 (2012)

    Article  Google Scholar 

  75. S.D. Jackson, A. Lauto, Lasers Surg. Med. 30, 184 (2002)

    Article  Google Scholar 

  76. M. Yamada, M. Shimizu, Y. Ohishi, J. Temmyo, M. Wada, T. Kanamori, M. Horiguchi, S. Takahashi, IEEE Photon. Technol. Lett. 9, 994 (1992)

    Article  Google Scholar 

  77. Biolase, http://www.biolase.com

  78. Kavo Dental, http://www.kavo.com

  79. Convergent Laser Technologies, http://www.convergentlaser.com

  80. IPG Photonics, www.ipgphotonics.com

  81. Y. Yao, A.J. Hoffman, C.F. Gmachl, Mid-infrared quantum cascade lasers. Nat. Photon. 6(7), 432–439 (2012)

    Article  Google Scholar 

  82. Nufern, http://www.nufern.com

  83. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, R. Vallée, 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. Opt. Lett. 39(7), 2052–2055 (2014)

    Article  Google Scholar 

  84. M. De Sario, L. Mescia, F. Prudenzano et al., Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers. Opt. Laser Technol. 41(1), 99–106 (2009)

    Article  Google Scholar 

  85. J.S. Sanghera, L.B. Shaw, C.M. Florea, P. Pureza, V.Q. Nguyen, F. Kung, D. Gibson, I.D. Aggarwal, in Nonlinear Properties of Chalcogenide Glass Fibers, Frontiers in Guided Wave Optics and Optoelectronics ed. by B. Pal (InTech, 2010) ISBN: 978-953-7619-82-4. http://www.intechopen.com/books/frontiers-in-guided-wave-optics-and-optoelectronics/nonlinear-properties-ofchalcogenide-glass-fibers

  86. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, Third order nonlinear spectroscopy in As2S3 chalcogenide glass fiber. J. Appl. Phys. 77, 5518–5523 (1995)

    Article  Google Scholar 

  87. J.S. Sanghera, L.B. Shaw, P. Pureza, V.Q. Nguyen, D. Gibson, I.D. Aggarwal, Progress of Chalcogenide Glass Fibers (OSA, Washington, DC, 2007). ISBN 1-55752-830-6

    Google Scholar 

  88. R.E. Slusher, J. Hodelin, J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, JOSA-B 21, 1146 (2004)

    Article  Google Scholar 

  89. V. Moizan, V. Nazabal, J. Troles et al., Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy. Opt. Mater. 31(1), 39–46 (2008)

    Article  Google Scholar 

  90. F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, F. Smektala, Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers. Opt. Mater. 33(2), 241–245 (2010)

    Article  Google Scholar 

  91. L. Mescia, F. Smektala, F. Prudenzano, Review article: new trends in amplifiers and sources via chalcogenide photonic crystal fibers. Int. J. Opt. 2012, 575818 (2012). doi:10.1155/2012/575818. 8 pages

    Article  Google Scholar 

  92. M. Bernier, M. El-Amraoui, J.F. Couillard, Y. Messaddeq, R. Vallée, Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm. Opt. Lett. 37(18), 3900–3902 (2012)

    Article  Google Scholar 

  93. https://en.wikipedia.org/wiki/Fiber_Bragg_grating

  94. M. Bernier, K. Asatryan, R. Vallee, T. Galstian, S.A. Vasil’ev, O.I. Medvedkov, V.G. Plotnichenko, P.I. Gnusin, E.M. Dianov, Quant. Electron. 41, 465 (2011)

    Article  Google Scholar 

  95. C. Florea, J.S. Sanghera, B. Shaw, I.D. Aggarwal, Opt. Mater. 31, 942 (2009)

    Article  Google Scholar 

  96. S.J. Mihailov, D. Grobnic, C.W. Smelser, P. Lu, R.B. Walker, H. Ding, Laser Chem. 2008, 416251 (2008)

    Article  Google Scholar 

  97. S.J. Mihailov, D. Grobnic, C.W. Smelser, Electron. Lett. 43, 442 (2007)

    Article  Google Scholar 

  98. M. Bernier, S. Gagnon, R. Vallée, Opt. Mater. Express 1, 832 (2011)

    Article  Google Scholar 

  99. C. Florea, J. Sanghera, I. Aggarwal, Opt. Mater. 30, 1603 (2008)

    Article  Google Scholar 

  100. D. Grobnic, S.J. Mihailov, C.W. Smelser, R.B. Walker, Proc. SPIE 6796, 67961K (2007)

    Article  Google Scholar 

  101. V. Fortin, M. Bernier, D. Faucher, J. Carrier, R. Vallée, Opt. Express 20, 19412 (2012)

    Article  Google Scholar 

  102. S. Kasap, P. Capper (eds.), Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2007), p. 1063

    Google Scholar 

  103. R.L. Sutherland, Handbook of Nonlinear Optics, 2nd edn. (Marcel Dekker, New York, 2003)

    Book  Google Scholar 

  104. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic, San Diego, 1992)

    Google Scholar 

  105. K. Tanaka, Optical nonlinearity in photonic glasses. J. Mater. Sci.: Mater. Electron. 16, 633–643 (2005)

    Google Scholar 

  106. T. Morioka, M. Saruwatari, IEEE J. Sel. Area Commun. 6, 1186 (1988)

    Article  Google Scholar 

  107. B.P. Nelson, K.J. Blow, P.D. Constantine, N.J. Noran, J.K. Lucek, I.W. Marshall, K. Smith, Electron. Lett. 27, 704 (1991)

    Article  Google Scholar 

  108. M.A. Newhouse, D.L. Weidman, D.W. Hall, Opt. Lett. 15, 1185 (1990)

    Article  Google Scholar 

  109. K. Petkov, P.J.S. Ewen, J. Non-Cryst, Solids 249, 150–159 (1999)

    Google Scholar 

  110. K.A. Cerqua-Richardson, J.M. Mckinley, B. Lawrence, S. Joshi, A. Villeneuve, Opt. Mater. 10, 155 (1998)

    Article  Google Scholar 

  111. T. Cardinal, K.A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J.F. Viens, A. Villeneuve, J. Non-Cryst. Solids 256–257, 353 (1999)

    Article  Google Scholar 

  112. G. Lenz, J. Zimmerman, T. Katsufuji, M.E. Lines, H.Y. Hwang, S. Spalter, R.E. Slusher, S.W. Cheong, J.S. Sanghera, I.D. Aggarwal, Opt. Lett. 25, 254 (2000)

    Article  Google Scholar 

  113. G. Kaur, F. Wang, Y.M. Yiu, D.W. Shoesmith, M. Zinke-Allmang, T.-K. Sham, Z. Ding, Surface second harmonic generation of Se–Te–Sb films. J. Mater. Sci. Mater. Electron. 20, S164–S169 (2009). doi:10.1007/s10854-007-9498-8

    Article  Google Scholar 

  114. W. Wadsworth, A. Ortigosa-Blanch, J. Knight, T. Birks, T. Man, P. Russell, J. Opt. Soc. Am. B 19, 2148 (2002)

    Article  Google Scholar 

  115. J.M. Dudley, G. Gënty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  Google Scholar 

  116. G. Gënty, S. Coen, J.M. Dudley, J. Opt. Soc. Am. B 24, 1771 (2007)

    Article  Google Scholar 

  117. S.V. Smirnov, J.D. Ania-Castanon, T.J. Ellingham, S.M. Kobtsev, S. Kukarin, S.K. Turitsyn, Opt. Fiber Technol. 12, 122 (2006)

    Article  Google Scholar 

  118. R.H.T. Udem, T.W. Hänsch, Nature 416, 233 (2002)

    Article  Google Scholar 

  119. I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, R.S. Windeler, Opt. Lett. 26, 608 (2001)

    Article  Google Scholar 

  120. S.T. Sanders, Appl. Phys. B 75, 799 (2002)

    Article  Google Scholar 

  121. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic, San Diego, 2001)

    Google Scholar 

  122. G.I. Stegeman, R.H. Stolen, J. Opt. Soc. Am. B 6, 652 (1989)

    Article  Google Scholar 

  123. A. Zheltikov, Appl. Phys. B: Lasers Opt. 77, 143 (2003)

    Article  Google Scholar 

  124. D.D. Hudson, S.A. Dekker, E.C. Mägi, A.C. Judge, S.D. Jackson, E. Li, J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, B.J. Eggleton, Opt. Lett. 36, 1122 (2011)

    Article  Google Scholar 

  125. B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photon. 5, 1749 (2011)

    Google Scholar 

  126. E.C. Mägi, L. Fu, H. Nguyen, M. Lamont, D. Yeom, B. Eggleton, Opt. Express 15, 10324 (2007)

    Article  Google Scholar 

  127. C. Baker, M. Rochette, IEEE Photon. J. 4, 960 (2012)

    Article  Google Scholar 

  128. D.I. Yeom, E.C. Mägi, M.R.E. Lamont, M.A.F. Roelens, L. Fu, B.J. Eggleton, Opt. Lett. 33, 660 (2008)

    Article  Google Scholar 

  129. M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, IEEE J. Quant. Electron. 27, 1296 (1991)

    Article  Google Scholar 

  130. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Oxford University Press, New York, 1979)

    Google Scholar 

  131. J. Troles, F. Smektala, G. Boudebs, A. Monteil, Opt. Mater. 22, 335 (2003)

    Article  Google Scholar 

  132. V. Mizrahi, K.W. DeLong, G.I. Stegeman, M.A. Saifi, M.J. Andrejco, Opt. Lett. 14, 1140 (1989)

    Article  Google Scholar 

  133. A. Tuniz, G. Brawley, D.J. Moss, B.J. Eggleton, Opt. Express 16, 18524 (2008)

    Article  Google Scholar 

  134. H. Steffensen, C. Agger, O. Bang, J. Opt. Soc. Am. B 29, 484 (2012)

    Article  Google Scholar 

  135. R. Ahmad, M. Rochette, Opt. Express 20, 10095 (2012)

    Article  Google Scholar 

  136. A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, M. Rochette, Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effect. Opt. Lett. 38(7), 1185 (2013)

    Article  Google Scholar 

  137. J. Nishii, T. Yamashita, T. Yamagishi, Appl. Opt. 28, 5122 (1988)

    Article  Google Scholar 

  138. T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, J. Lightwave Technol. 2, 607 (1984)

    Article  Google Scholar 

  139. A.V. Vasil'ev, G.G. Devyatykh, E.M. Dianov, A.N. Gur’yanov, A.Y. Laptev, V.G. Plotnichenko, Y.N. Pyrkov, G.E. Snopatin, I.V. Skripachev, M.F. Churbanov, V.A. Shipunov, Quant. Electron. 23, 89 (1993)

    Article  Google Scholar 

  140. T.M. Monro, Y.D. West, D.W. Hewak, N.G.R. Broderick, D.J. Richardson, Chalcogenide holey fibres. Electron. Lett. 36(24), 1998–2000 (2000)

    Article  Google Scholar 

  141. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, J.L. Adam, Small-core chalcogenide microstructured fibers for the infrared. Appl. Opt. 47(32), 6014–6021 (2008)

    Article  Google Scholar 

  142. F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, N. Traynor, Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared. SPIE 6588, 58803 (2007)

    Google Scholar 

  143. X. Feng, A.K. Mairaj, D.W. Hewak, T.M. Monro, Non silica glasses for holey fibers. J. Lightwave Technol. 23(6), 2046–2053 (2005)

    Article  Google Scholar 

  144. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, F. Smektala (2010) Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources. Opt. Express 18(25), 26655

    Google Scholar 

  145. M.F. Churbanov, High purity chalcogenide glasses as materials for fiber optics. J. Non-Cryst. Solids 184, 25–29 (1995)

    Article  Google Scholar 

  146. G.G. Devyatykh, M.F. Churbanov, I.V. Scripachev, G.E. Snopatin, E.M. Dianov, V.G. Plotnichenko, Recent developments in As-S glass fibres. J. Non-Cryst. Solids 256&257, 318–322 (1999)

    Article  Google Scholar 

  147. D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5(8), 3144–3151 (1972)

    Article  Google Scholar 

  148. G.E. Snopatin, M.F. Churbanov, A.A. Pushkin, V.V. Gerasimenko, E.M. Dianov, V.G. Plotnichenko, High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km. Optoelectron. Adv. Mater. Rapid Commun. 3(7), 669–671 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurinder Kaur Ahluwalia Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahluwalia, G.K. (2017). Optical Fibers. In: Ahluwalia, G. (eds) Applications of Chalcogenides: S, Se, and Te. Springer, Cham. https://doi.org/10.1007/978-3-319-41190-3_4

Download citation

Publish with us

Policies and ethics