Abstract
Francisella tularensis is a facultative intracellular bacterium causing tularemia, a zoonotic disease. Francisella replicates in the macrophage cytosol and eventually triggers cytosolic immune responses. In murine macrophages, Francisella novicida and Francisella tularensis live vaccine strain lyse in the host cytosol and activate the cytosolic DNA receptor Aim2. Here, we review the mechanisms leading or contributing to Aim2 inflammasome activation, including the role of TLRs and of IFN signaling and the implication of the guanylate-binding proteins 2 and 5 in triggering cytosolic bacteriolysis. Furthermore, we present how this cytosolic Gram-negative bacterium escapes recognition by caspase-11 but can trigger a non-canonical caspase-8 inflammasome. In addition, we highlight the differences in inflammasome activation in murine and human cells with pyrin, NLRP3, and AIM2 involved in sensing Francisella in human phagocytes. From a bacterial prospective, we describe the hiding strategy of Francisella to escape recognition by innate sensors and to resist to bacteriolysis in the host cytosol. Finally, we discuss the inability of the inflammasome sensors to detect F. tularensis subspecies tularensis strains, making them highly pathogenic stealth microbes.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Aachoui Y, Leaf IA, Hagar JA et al (2013) Caspase-11 protects against bacteria that escape the vacuole. Science 339:975–978. doi:10.1126/science.1230751
Akhter A, Caution K, Abu Khweek A et al (2012) Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37:35–47. doi:10.1016/j.immuni.2012.05.001
Anthony LS, Ghadirian E, Nestel FP, Kongshavn PA (1989) The requirement for gamma interferon in resistance of mice to experimental tularemia. Microb Pathog 7:421–428
Atianand MK, Duffy EB, Shah A et al (2011) Francisella tularensis reveals a disparity between human and mouse NLRP3 inflammasome activation. J Biol Chem 286:39033–39042. doi:10.1074/jbc.M111.244079
Auerbuch V, Brockstedt DG, Meyer-Morse N et al (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200:527–533
Barel M, Charbit A (2013) Francisella tularensis intracellular survival: to eat or to die. Microbes Infect Inst Pasteur. doi:10.1016/j.micinf.2013.09.009
Barker JR, Chong A, Wehrly TD et al (2009) The Francisella tularensis pathogenicity island encodes a secretion system that is required for phagosome escape and virulence. Mol Microbiol 74:1459–1470
Baron GS, Nano FE (1998) MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol 29:247–259
Bauler TJ, Chase JC, Bosio CM (2011) IFN-beta mediates suppression of IL-12p40 in human dendritic cells following infection with virulent Francisella tularensis. J Immunol Baltim Md 1950 187:1845–1855. doi:10.4049/jimmunol.1100377
Bedoya F, Sandler LL, Harton JA (2007) Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J Immunol 178:3837–3845
Belhocine K, Monack DM (2012) Francisella infection triggers activation of the AIM2 inflammasome in murine dendritic cells. Cell Microbiol 14:71–80. doi:10.1111/j.1462-5822.2011.01700.x
Bokhari SM, Kim K-J, Pinson DM et al (2008) NK cells and gamma interferon coordinate the formation and function of hepatic granulomas in mice infected with the Francisella tularensis live vaccine strain. Infect Immun 76:1379–1389. doi:10.1128/IAI.00745-07
Borges da Silva H, Fonseca R, Pereira RM et al (2015) Splenic macrophage subsets and their function during blood-borne infections. Front Immunol 6:480. doi:10.3389/fimmu.2015.00480
Briken V, Ruffner H, Schultz U et al (1995) Interferon regulatory factor 1 is required for mouse Gbp gene activation by gamma interferon. Mol Cell Biol 15:975–982
Broms JE, Sjostedt A, Lavander M (2010) The role of the Francisella tularensis pathogenicity island in Type VI secretion, intracellular survival, and modulation of host cell signaling. Front Microbiol. doi:10.3389/fmicb.2010.00136
Broms JE, Lavander M, Meyer L, Sjostedt A (2011) IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun 79:3683–3696. doi:10.1128/IAI.01344-10
Burckstummer T, Baumann C, Bluml S et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272
Carlson PEJ, Carroll JA, O’Dee DM, Nau GJ (2007) Modulation of virulence factors in Francisella tularensis determines human macrophage responses. Microb Pathog 42:204–214. doi:10.1016/j.micpath.2007.02.001
Case EDR, Chong A, Wehrly TD et al (2014) The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cell Microbiol 16:862–877. doi:10.1111/cmi.12246
Checroun C, Wehrly TD, Fischer ER et al (2006) Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA 103:14578–14583
Chong A, Wehrly TD, Child R et al (2012) Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway. Autophagy 8:1342–1356. doi:10.4161/auto.20808
Clemens DL, Horwitz MA (2007) Uptake and intracellular fate of Francisella tularensis in human macrophages. Ann NY Acad Sci R 101196annals1409001 1105:160–186
Clemens DL, Lee BY, Horwitz MA (2004) Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun 72:3204–3217. doi:10.1128/IAI.72.6.3204-3217.2004
Clemens DL, Lee BY, Horwitz MA (2005) Francisella tularensis enters macrophages via a novel process involving pseudopod loops. Infect Immun 73:5892–5902. doi:10.1128/IAI.73.9.5892-5902.2005
Cole LE, Shirey KA, Barry E et al (2007) Toll-like receptor 2-mediated signaling requirements for Francisella tularensis live vaccine strain infection of murine macrophages. Infect Immun 75:4127–4137
Cole LE, Santiago A, Barry E et al (2008) Macrophage proinflammatory response to Francisella tularensis live vaccine strain requires coordination of multiple signaling pathways. J Immunol 180:6885–6891
Cole LE, Laird MHW, Seekatz A et al (2010) Phagosomal retention of Francisella tularensis results in TIRAP/Mal-independent TLR2 signaling. J Leukoc Biol 87:275–281. doi:10.1189/jlb.0909619
Crane DD, Bauler TJ, Wehrly TD, Bosio CM (2014) Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome. Front Microbiol 5:438. doi:10.3389/fmicb.2014.00438
Dai S, Rajaram MVS, Curry HM et al (2013) Fine tuning inflammation at the front door: macrophage complement receptor. PLoS Pathog 9:e1003114. doi:10.1371/journal.ppat.1003114
De Pascalis R, Taylor BC, Elkins KL (2008) Diverse myeloid and lymphoid cell subpopulations produce gamma interferon during early innate immune responses to Francisella tularensis live vaccine strain. Infect Immun 76:4311–4321
Degrandi D, Kravets E, Konermann C et al (2013) Murine guanylate binding protein 2 (mGBP2) controls Toxoplasma gondii replication. Proc Natl Acad Sci USA 110:294–299. doi:10.1073/pnas.1205635110
del Barrio L, Sahoo M, Lantier L et al (2015) Production of anti-LPS IgM by B1a B cells depends on IL-1beta and is protective against lung infection with Francisella tularensis LVS. PLoS Pathog 11:e1004706. doi:10.1371/journal.ppat.1004706
Dietrich N, Lienenklaus S, Weiss S, Gekara NO (2010) Murine toll-like receptor 2 activation induces type I interferon responses from endolysosomal compartments. PLoS ONE 5:e10250. doi:10.1371/journal.pone.0010250
Dotson RJ, Rabadi SM, Westcott EL et al (2013) Repression of inflammasome by Francisella tularensis during early stages of infection. J Biol Chem 288:23844–23857. doi:10.1074/jbc.M113.490086
Doyle CR, Pan J-A, Mena P et al (2014) TolC-dependent modulation of host cell death by the Francisella tularensis live vaccine strain. Infect Immun 82:2068–2078. doi:10.1128/IAI.00044-14
Elkins KL, Rhinehart-Jones TR, Culkin SJ et al (1996) Minimal requirements for murine resistance to infection with Francisella tularensis LVS. Infect Immun 64:3288–3293
Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832. doi:10.1038/nrmicro1004
Fernandes-Alnemri T, Yu JW, Datta P et al (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513
Fernandes-Alnemri T, Yu JW, Juliana C et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11:385–393. doi:10.1038/ni.1859
Finethy R, Jorgensen I, Haldar AK et al (2015) Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in chlamydia-infected macrophages. Infect Immun 83:4740–4749. doi:10.1128/IAI.00856-15
Furevik A, Pettersen EF, Colquhoun D, Wergeland HI (2011) The intracellular lifestyle of Francisella noatunensis in Atlantic cod (Gadus morhua L.) leucocytes. Fish Shellfish Immunol 30:488–494. doi:10.1016/j.fsi.2010.11.019
Gavrilin MA, Bouakl IJ, Knatz NL et al (2006) Internalization and phagosome escape required for Francisella to induce human monocyte IL-1beta processing and release. Proc Natl Acad Sci USA 103:141–146
Gavrilin MA, Mitra S, Seshadri S et al (2009) Pyrin critical to macrophage IL-1beta response to Francisella challenge. J Immunol Baltim Md 1950 182:7982–7989. doi:10.4049/jimmunol.0803073
Ghonime MG, Mitra S, Eldomany RA et al (2015) Inflammasome priming is similar for Francisella species that differentially induce inflammasome activation. PLoS ONE 10:e0127278. doi:10.1371/journal.pone.0127278
Golovliov I, Baranov V, Krocova Z et al (2003) An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 71:5940–5950
Gunn J, Ernst R (2007) The structure and function of Francisella LPS
Gurcan S (2014) Epidemiology of tularemia. Balk Med J 31:3–10. doi:10.5152/balkanmedj.2014.13117
Hagar JA, Powell DA, Aachoui Y et al (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253. doi:10.1126/science.1240988
Hajjar AM, Harvey MD, Shaffer SA et al (2006) Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by toll-like receptors. Infect Immun 74:6730–6738
Hall JD, Woolard MD, Gunn BM et al (2008) Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun 76:5843–5852
Henry T, Monack DM (2007) Activation of the inflammasome upon Francisella tularensis infection: interplay of innate immune pathways and virulence factors. Cell Microbiol 9:2543–2551
Henry T, Brotcke A, Weiss DS et al (2007) Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J Exp Med 204:987–994
Henry T, Kirimanjeswara GS, Ruby T et al (2010) Type I IFN signaling constrains IL-17A/F secretion by gammadelta T cells during bacterial infections. J Immunol 184:3755–3767. doi:10.4049/jimmunol.0902065
Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518
Huang MT-H, Mortensen BL, Taxman DJ et al (2010) Deletion of ripA alleviates suppression of the inflammasome and MAPK by Francisella tularensis. J Immunol Baltim Md 1950(185):5476–5485. doi:10.4049/jimmunol.1002154
Jayakar HR, Parvathareddy J, Fitzpatrick EA et al (2011) A galU mutant of Francisella tularensis is attenuated for virulence in a murine pulmonary model of tularemia. BMC Microbiol 11:1–16. doi:10.1186/1471-2180-11-179
Jin L, Hill KK, Filak H, et al (2011) MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J Immunol Baltim Md 1950 187:2595–2601. doi:10.4049/jimmunol.1100088
Jin T, Perry A, Jiang J et al (2012) Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561–571. doi:10.1016/j.immuni.2012.02.014
Jones J (2010) Molecular mechanisms of the innate immune response to Francisella tularensis. Stanford University
Jones CL, Weiss DS (2011) TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection. PLoS ONE 6:e20609. doi:10.1371/journal.pone.0020609
Jones JW, Kayagaki N, Broz P et al (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA 107:9771–9776. doi:10.1073/pnas.1003738107
Jones CL, Sampson TR, Nakaya HI et al (2012) Repression of bacterial lipoprotein production by F. novicida facilitates evasion of innate immune recognition. Cell. doi:10.1111/j.1462-5822.2012.01816.x
Kanistanon D, Hajjar AM, Pelletier MR et al (2008) A Francisella mutant in lipid A carbohydrate modification elicits protective immunity. PLoS Pathog 4:e24. doi:10.1371/journal.ppat.0040024
Katz J, Zhang P, Martin M et al (2006) Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect Immun 74:2809–2816
Kayagaki N, Wong MT, Stowe IB et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. doi:10.1126/science.1240248
Khader SA, Gopal R (2010) IL-17 in protective immunity to intracellular pathogens. Virulence 1:423–427. doi:10.4161/viru.1.5.12862
Kim BH, Shenoy AR, Kumar P et al (2011) A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science 332:717–721. doi:10.1126/science.1201711
Kingry LC, Petersen JM (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 4:35. doi:10.3389/fcimb.2014.00035
Lai XH, Sjostedt A (2003) Delineation of the molecular mechanisms of Francisella tularensis-induced apoptosis in murine macrophages. Infect Immun 71:4642–4646
Lai X-H, Shirley RL, Crosa L et al (2010) Mutations of Francisella novicida that alter the mechanism of its phagocytosis by murine macrophages. PLoS ONE 5:e11857. doi:10.1371/journal.pone.0011857
Larsson P, Elfsmark D, Svensson K et al (2009) Molecular evolutionary consequences of niche restriction in Francisella tularensis, a facultative intracellular pathogen. PLoS Pathog 5:e1000472. doi:10.1371/journal.ppat.1000472
Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319:2329–2336. doi:10.1016/j.yexcr.2013.04.021
Li H, Nookala S, Bina XR et al (2006) Innate immune response to Francisella tularensis is mediated by TLR2 and caspase-1 activation. J Leukoc Biol 80:766–773
Lin Y, Ritchea S, Logar A et al (2009) Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity 31:799–810
Lindemann SR, Peng K, Long ME et al (2011) Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages. Infect Immun 79:581–594. doi:10.1128/IAI.00863-10
Lloubes R, Cascales E, Walburger A et al (2001) The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 152:523–529
Luksch H, Romanowski MJ, Chara O et al (2012) Naturally occurring genetic variants of human caspase-1 differ considerably in structure and the ability to activate interleukin-1beta. Hum Mutat. doi:10.1002/humu.22169
Mahawar M, Atianand MK, Dotson RJ et al (2012) Identification of a novel Francisella tularensis factor required for intramacrophage survival and subversion of innate immune response. J Biol Chem 287:25216–25229. doi:10.1074/jbc.M112.367672
Man SM, Hopkins LJ, Nugent E et al (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci USA. doi:10.1073/pnas.1402911111
Man SM, Karki R, Malireddi RKS et al (2015) The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol 16:467–475. doi:10.1038/ni.3118
Mares CA, Ojeda SS, Morris EG et al (2008) Initial delay in the immune response to Francisella tularensis is followed by hypercytokinemia characteristic of severe sepsis and correlating with upregulation and release of damage-associated molecular patterns. Infect Immun 76:3001–3010. doi:10.1128/IAI.00215-08
Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005) Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 202:1043–1049
Mariathasan S, Weiss DS, Newton K et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232
McLendon MK, Apicella MA, Allen LA (2006) Francisella tularensis: taxonomy, genetics, and immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol 60:167–185
Meunier E, Broz P (2016) Interferon-inducible GTPases in cell autonomous and innate immunity. Cell Microbiol 18:168–180. doi:10.1111/cmi.12546
Meunier E, Dick MS, Dreier RF et al (2014) Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509:366–370. doi:10.1038/nature13157
Meunier E, Wallet P, Dreier RF et al (2015) Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat Immunol 16:476–484. doi:10.1038/ni.3119
Miao EA, Leaf IA, Treuting PM et al (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11:1136–1142. doi:10.1038/ni.1960
Miller CN, Steele SP, Brunton JC et al (2014) Extragenic suppressor mutations in DeltaripA disrupt stability and function of LpxA. BMC Microbiol 14:336. doi:10.1186/s12866-014-0336-x
Nano FE, Zhang N, Cowley SC et al (2004) A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186:6430–6436
Okan NA, Kasper DL (2013) The atypical lipopolysaccharide of Francisella. Carbohydr Res 378:79–83. doi:10.1016/j.carres.2013.06.015
Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180:7147–7157
Peng K, Broz P, Jones J et al (2011) Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis. Cell Microbiol 13:1586–1600. doi:10.1111/j.1462-5822.2011.01643.x
Pierini R, Juruj C, Perret M et al (2012) AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 19:1709–1721. doi:10.1038/cdd.2012.51
Pierini R, Perret M, Djebali S et al (2013) ASC controls IFN-gamma levels in an IL-18-Dependent Manner in Caspase-1-Deficient mice infected with Francisella novicida. J Immunol 191:3847–3857. doi:10.4049/jimmunol.1203326
Pilla DM, Hagar JA, Haldar AK et al (2014) Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc Natl Acad Sci USA 111:6046–6051. doi:10.1073/pnas.1321700111
Platz GJ, Bublitz DC, Mena P et al (2010) A tolC mutant of Francisella tularensis is hypercytotoxic compared to the wild type and elicits increased proinflammatory responses from host cells. Infect Immun 78:1022–1031. doi:10.1128/IAI.00992-09
Py BF, Kim M-S, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49:331–338. doi:10.1016/j.molcel.2012.11.009
Rajaram MVS, Butchar JP, Parsa KVL et al (2009) Akt and SHIP modulate Francisella escape from the phagosome and induction of the Fas-mediated death pathway. PLoS ONE 4:e7919. doi:10.1371/journal.pone.0007919
Rathinam VA, Jiang Z, Waggoner SN et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402. doi:10.1038/ni.1864
Roberts TL, Idris A, Dunn JA et al (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–1060
Robertson GT, Case EDR, Dobbs N et al (2014) FTT0831c/FTL_0325 contributes to Francisella tularensis cell division, maintenance of cell shape, and structural integrity. Infect Immun 82:2935–2948. doi:10.1128/IAI.00102-14
Sagulenko V, Thygesen SJ, Sester DP et al (2013) AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ (Epub May 2013) 3:1–12. doi:10.1038/cdd.2013.37
Sampson TR, Napier BA, Schroeder MR et al (2014) A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. Proc Natl Acad Sci USA 111:11163–11168. doi:10.1073/pnas.1323025111
Sandstrom G, Sjostedt A, Johansson T et al (1992) Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol Immunol 5:201–210
Sandstrom A, Peigne C-M, Leger A et al (2014) The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vgamma9Vdelta2 T cells. Immunity 40:490–500. doi:10.1016/j.immuni.2014.03.003
Sha W, Mitoma H, Hanabuchi S et al (2014) Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proc Natl Acad Sci USA 111:16059–16064. doi:10.1073/pnas.1412487111
Shenoy AR, Wellington DA, Kumar P et al (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336:481–485. doi:10.1126/science.1217141
Shi CS, Shenderov K, Huang NN et al (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263. doi:10.1038/ni.2215
Shi J, Zhao Y, Wang Y et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192. doi:10.1038/nature13683
Sjostedt A (2007) Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations
Skyberg JA, Rollins MF, Samuel JW et al (2013) Interleukin-17 protects against the Francisella tularensis live vaccine strain but not against a virulent F. tularensis type A strain. Infect Immun 81:3099–3105. doi:10.1128/IAI.00203-13
Stanley SA, Johndrow JE, Manzanillo P, Cox JS (2007) The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152
Storek KM, Gertsvolf NA, Ohlson MB, Monack DM (2015) cGAS and Ifi204 cooperate to produce Type I IFNs in response to Francisella infection. J Immunol Baltim Md 1950 194:3236–3245. doi:10.4049/jimmunol.1402764
Telepnev M, Golovliov I, Grundstrom T et al (2003) Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-alpha and IL-1 from murine macrophages. Cell Microbiol 5:41–51
Thakran S, Li H, Lavine CL et al (2008) Identification of Francisella tularensis lipoproteins that stimulate the toll-like receptor (TLR) 2/TLR1 heterodimer. J Biol Chem 283:3751–3760. doi:10.1074/jbc.M706854200
Ulland TK, Buchan BW, Ketterer MR et al (2010) Cutting edge: mutation of Francisella tularensis mviN leads to increased macrophage absent in melanoma 2 inflammasome activation and a loss of virulence. J Immunol 185:2670–2674. doi:10.4049/jimmunol.1001610
Vojtech LN, Scharping N, Woodson JC, Hansen JD (2012) Roles of inflammatory caspases during processing of zebrafish interleukin-1beta in Francisella noatunensis infection. Infect Immun 80:2878–2885. doi:10.1128/IAI.00543-12
Wang X, Ribeiro AA, Guan Z et al (2007) Attenuated virulence of a Francisella mutant lacking the lipid A 4′-phosphatase. Proc Natl Acad Sci USA 104:4136–4141. doi:10.1073/pnas.0611606104
Weiss DS, Brotcke A, Henry T et al (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci USA 104:6037–6042
Welch MD, Way M (2013) Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 14:242–255. doi:10.1016/j.chom.2013.08.011
West AP, Brodsky IE, Rahner C et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480. doi:10.1038/nature09973
Wickstrum JR, Bokhari SM, Fischer JL et al (2009) Francisella tularensis induces extensive caspase-3 activation and apoptotic cell death in the tissues of infected mice. Infect Immun 77:4827–4836. doi:10.1128/IAI.00246-09
Wu J, Fernandes-Alnemri T, Alnemri ES (2010) Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30:693–702. doi:10.1007/s10875-010-9425-2
Xu H, Yang J, Gao W et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241. doi:10.1038/nature13449
Yamamoto M, Okuyama M, Ma JS et al (2012) A cluster of interferon-gamma-inducible p65 GTPases plays a critical role in host defense against Toxoplasma gondii. Immunity 37:302–313. doi:10.1016/j.immuni.2012.06.009
Yang H, Ji X, Zhao G et al (2012) Structural insight into HIV-1 capsid recognition by rhesus TRIM5alpha. Proc Natl Acad Sci USA 109:18372–18377. doi:10.1073/pnas.1210903109
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Wallet, P., Lagrange, B., Henry, T. (2016). Francisella Inflammasomes: Integrated Responses to a Cytosolic Stealth Bacterium. In: Backert, S. (eds) Inflammasome Signaling and Bacterial Infections. Current Topics in Microbiology and Immunology, vol 397. Springer, Cham. https://doi.org/10.1007/978-3-319-41171-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-41171-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41170-5
Online ISBN: 978-3-319-41171-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
