Skip to main content
  • 1183 Accesses

Abstract

This chapter consists of two separate sections: (1) Integral Equation Method for Pair Correlation Functions and (2) Pair Correlation Function in the Subcritical Regimes. The two sections discuss pair correlation functions on quite different aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, from the viewpoint of the Yang–Lee theory of condensation [21], which examines the grand partition function \(\Xi \) in the complex absolute activity (z) plane the zeros of complex roots in the z plane approach points \(t_{s}\) (\(s=1,2,\ldots ,\) finite) on real axis as \(V\rightarrow \infty \), so that every neighborhood, however small, of some points on the real axis contains zero of \(\Xi \) and consequently \(\ln \Xi \) is not an analytic function. This nonanalyticity manifests itself in phase transition.

  2. 2.

    This is the version used by Baxter [19].

  3. 3.

    This gauge may be called the thermodynamic consistency gauge.

References

  1. L.S. Ornstein, F. Zernike, Proc. Akad. Sci. Amsterdam 17, 2632 (1914)

    Google Scholar 

  2. J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  3. G.S. Rushbrooke, H.I. Scoins, Proc. Roy. Soc. London A 216, 203 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.L. Lebowitz, J.K. Percus, Phys. Rev. 144, 251 (1966)

    Article  ADS  Google Scholar 

  5. E. Waisman, Mol. Phys. 25, 45 (1973)

    Article  ADS  Google Scholar 

  6. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic, London, 1986)

    MATH  Google Scholar 

  7. F. Lado, J. Chem. Phys. 47, 4828 (1968)

    Article  ADS  Google Scholar 

  8. Y. Rosenfeld, N.W. Ashcroft, Phys. Rev. A 20, 1208 (1970)

    Article  ADS  Google Scholar 

  9. L. Verlet, Mol. Phys. 41, 183 (1980)

    Article  ADS  Google Scholar 

  10. M. Kumar, N.H. March, A. Wasserman, Phys. Chem. Liq. 11, 271 (1982)

    Article  Google Scholar 

  11. G.A. Martynov, G.N. Sarkisov, Mol. Phys. 49; 1495 (1983). G. A. Martynov, A.G. Vompe. Phys. Rev. E 47, 1012 (1993)

    Google Scholar 

  12. F.F. Rogers, D.A. Young, Phys. Rev. A 30, 999 (1984)

    Article  ADS  Google Scholar 

  13. J.P. Hansen, G. Zerah, Phys. Lett. 108A 277 (1985); G. Zerah, J.P. Hansen. J. Chem. Phys. 84, 2336 (1986)

    Google Scholar 

  14. L.L. Lee, J. Chem. Phys. 103, 9388 (1995)

    Article  ADS  Google Scholar 

  15. B.C. Eu, K. Rah, J. Chem. Phys. 111, 3327 (1999)

    Article  ADS  Google Scholar 

  16. E.C. Titchmarsh, Theory of Fourier Integrals, 2nd edn. (Oxford, London, 1939)

    Google Scholar 

  17. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, vol. 1 (McGraw-Hill, New York, 1953)

    Google Scholar 

  18. B. Noble, Methods Based on the Wiener-Hopf Technique (Pergamon, Oxford, 1958)

    MATH  Google Scholar 

  19. R.J. Baxter, J. Chem. Phys. 49, 2770 (1968)

    Article  ADS  Google Scholar 

  20. R.J. Baxter, Austr. J. Phys. 21, 563 (1968)

    Google Scholar 

  21. C.N. Yang, T.D. Lee, Phys. Rev. 87(404), 410 (1952)

    ADS  MathSciNet  Google Scholar 

  22. B.C. Eu, Transport Coefficients of Fluids (Springer, Heidelberg, 2006)

    Google Scholar 

  23. J.K. Percus, Phys. Rev. Lett. 8, 462 (1962)

    Article  ADS  Google Scholar 

  24. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge U. P., London, 1952)

    Google Scholar 

  25. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987)

    MATH  Google Scholar 

  26. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Mechanics (Springer, Berlin, 1988)

    Book  MATH  Google Scholar 

  27. T.L. Hill, Statistical Mechanics (McGraw-Hill, New York, 1956)

    MATH  Google Scholar 

  28. A. Münster, Statistical Thermodynamics, vol. 1 (Springer, Berlin, 1969)

    Google Scholar 

  29. B.C. Eu, M. Al-Ghoul, Chemical Thermodynamics (World Scientific, Singapore, 2010)

    Book  Google Scholar 

  30. D. Chandler in Studies in Statistical Mechanics, vol. 8, ed. by E.W. Montroll, J.L. Lebowitz (North-Holland, Amsterdam, 1982); D. Chandler, H.C. Andersen, J. Chem. Phys. 59, 1930 (1973); J.G. Curro, K.S. Schweizer, J. Chem. Phys. 89, 3242 (1988)

    Google Scholar 

  31. H. Farhat, B.C. Eu, J. Chem. Phys. 104, 300 (1996)

    Article  ADS  Google Scholar 

  32. H.H. Gan, B.C. Eu, J. Chem. Phys. 105, 4323 (1996)

    Article  ADS  Google Scholar 

  33. B.C. Eu, H.H. Gan, Phys. A 171, 265 (1991); B.C. Eu, H.H. Gan, J. Chem. Phys. 99, 4084 (1995). In relation to this work

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Chan Eu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eu, B.C. (2016). Equilibrium Pair Correlation Functions. In: Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-41147-7_11

Download citation

Publish with us

Policies and ethics