Skip to main content

Influence of Loading Rate on Fracture Strength of Individual Sand Particles

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Dynamic loading on granular materials, such as impact, blast, or projectile penetration, can impose large inter-particle forces to cause significant particle fracture within individual particles. Extensive research has been conducted at different strain rates on granular media mass, but very little has been published to investigate the influence of strain or loading rate on individual particles. Therefore, a gap in the knowledge base is present since comprehensive multi-scale modeling of granular material begins at the micro (particle) scale. In this paper, individual natural sand particles are compressed to fracture at loading rates of 0.2 mm/min, 2.25 m/s, and 14.5 m/s using quasi-static unconfined compression and unconfined mini-Kolsky bar techniques. Fracture loads are compared for various “types” of particles within the natural sand, and compared to conventional quasi-static failure definitions for particles. Particles exhibited loading rate dependence when comparing Weibull characteristic tensile strength with loading rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Børvik, T., Olovsson, L., Hanssen, A.G., Dharmasena, K.P., Hansson, H., Wadley, H.N.G.: A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates. J. Mech. Phys. Solids 59(5), 940–958 (2011). doi:10.1016/j.jmps.2011.03.004

    Article  Google Scholar 

  2. Braslau, D.: Partitioning of energy in hypervelocity impact against loose sand targets. J. Geophys. Res. 75(20), 3987–3999 (1970). doi:10.1029/JB075i020p03987

    Article  Google Scholar 

  3. Regueiro, R., Pak, R., McCartney, J., Sture, S., Yan, B., Duan, Z., Svoboda, J., Mun, W., Vasilyev, O., Kasimov, N., Brown-Dymkoski, E., Hansen, C., Li, S., Ren, B., Alshibli, K., Druckrey, A., Lu, H., Luo, H., Brannon, R., Bonifasi-Lista, C., Yarahmadi, A., Ghodrati, E., Colovos, J.: ONR MURI project on soil blast modeling and simulation. In: Song, B., Casem, D., Kimberley, J. (eds.) Dynamic Behavior of Materials. Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 1, pp. 341–353. Springer (2014)

    Google Scholar 

  4. Cole, R.P.: Ballistic penetration of a sandbagged redoubt using silica sand and pulverized rubber of various grain sizes. University of South Florida (2010)

    Google Scholar 

  5. Allen, W.A., Mayfield, E.B., Morrison, H.L.: Dynamics of a projectile penetrating sand. J. Appl. Phys. 28(3), 370–376 (1957). doi:10.1063/1.1722750

    Article  MATH  Google Scholar 

  6. Cooper, W., Breaux, B.: Grain fracture in rapid particulate media deformation and a particulate media research roadmap from the PMEE workshops. Int. J. Fract. 162(1–2), 137–150 (2010). doi:10.1007/s10704-010-9467-8

    Article  MATH  Google Scholar 

  7. McDowell, G.R., Bolton, M.D.: On the micromechanics of crushable aggregates. Geotechnique 48, 667–679 (1998)

    Article  Google Scholar 

  8. Bolton, M.D.: The strength and dilatancy of sands. Geotechnique 36, 65–78 (1986)

    Article  Google Scholar 

  9. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)

    Article  Google Scholar 

  10. Wang, Z., Yang, X., Chen, Q., Zhang, Y., Zhao, Y.: Study of the contact forces and grain size distribution during grain crushing. In: Multimedia Technology (ICMT), 2011 International Conference on, 26–28 July 2011, pp. 2617–2622 (2011)

    Google Scholar 

  11. Cil, M.B., Alshibli, K.A.: 3D evolution of sand fracture under 1D compression. Géotechnique (2014)

    Google Scholar 

  12. Cooper, W.: Communication of stresses by chains of grains in high-speed particulate media impacts. In: Proulx, T. (ed.) Dynamic Behavior of Materials. Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 1, pp. 99–107. Springer, New York (2011)

    Google Scholar 

  13. Cavarretta, I., O’Sullivan, C.: The mechanics of rigid irregular particles subject to uniaxial compression. Geotechnique 62(8), 11 (2012)

    Article  Google Scholar 

  14. Alshibli, K., Cil, M., Kenesei, P., Lienert, U.: Strain tensor determination of compressed individual silica sand particles using high-energy synchrotron diffraction. Granul. Matter. 15(5), 517–530 (2013). doi:10.1007/s10035-013-0424-x

    Article  Google Scholar 

  15. McDowell, G.R., Amon, A.: The application of Weibull statistics to the fracture of soil particles. Soil. Found. 40(5), 133–141 (2000). doi:10.3208/sandf.40.5_133

    Article  Google Scholar 

  16. Nakata, Y., Kato, Y., Hyodo, M., Hyde, A.F.L., Murata, H.: One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. J. Jpn. Geotech. Soc. soil. found. 41(2), 39–51 (2001)

    Article  Google Scholar 

  17. Cil, M.B., Alshibli, K.A.: 3D assessment of fracture of sand particles using discrete element method. Géotechnique Letters (2012)

    Google Scholar 

  18. Antoun, T., Herbold, E., Johnson, S.: Dynamic behavior of sand: Annual Report FY 11. In., vol. LLNL-TR-539077. Lawrence Livermore National Laboratory (2012)

    Google Scholar 

  19. Parab, N.D., Claus, B., Hudspeth, M.C., Black, J.T., Mondal, A., Sun, J., Fezzaa, K., Xiao, X., Luo, S.N., Chen, W.: Experimental assessment of fracture of individual sand particles at different loading rates. Int. J. Impact. Eng. 68, 8–14 (2014). doi:10.1016/j.ijimpeng.2014.01.003

    Article  Google Scholar 

  20. Druckrey, A.M., Alshibli, K.A.: 3D finite element modeling of sand particle fracture based on in situ X-Ray synchrotron imaging. Int. J. Numer. Anal. Methods Geomech. 40(1), 105–116 (2015). doi:10.1002/nag.2396

    Article  Google Scholar 

  21. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18(3), 293–297 (1951)

    MATH  Google Scholar 

  22. Casem, D.T., Grunschel, S.E., Schuster, B.E.: Normal and transverse displacement interferometers applied to small diameter kolsky bars. Exp. Mech. 52(2), 173–184 (2012). doi:10.1007/s11340-011-9524-x

    Article  Google Scholar 

Download references

Acknowledgment

This material is funded by the Office of Naval Research (ONR) grant No. N00014-11-1-0691.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Druckrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Druckrey, A., Casem, D., Alshibli, K., Huskins, E. (2017). Influence of Loading Rate on Fracture Strength of Individual Sand Particles. In: Casem, D., Lamberson, L., Kimberley, J. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41132-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41132-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41131-6

  • Online ISBN: 978-3-319-41132-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics