Skip to main content

Natural Polymers vs Synthetic Polymer

  • Chapter
  • First Online:
Natural Polymer Drug Delivery Systems

Abstract

Polymers play an important role as excipients in any dosage form. They influence drug release and should be stable, economic compatible, non-toxic, etc. They are broadly classified as natural polymers and synthetic polymers. Synthetic and natural based biodegradable polymers have received much more attention in the last decades due their potential applications in the fields related to environmental protection and the maintenance of physical health. Biodegradable materials are used in agriculture, medicine packaging, and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. Synthetic polymers are widely used in biomedical implants and devices because they can be fabricated into various shapes. Natural polymers are basically polysaccharides so they are biocompatible and without any side effects. In this chapter we have discussed various natural polymers, their advantages over synthetic polymers and role of natural polymers in designing novel drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marino Jr R, Gonzales-Portillo M. Preconquest Peruvian neurosurgeons: a study of Inca and pre-Columbian trephination and the art of medicine in ancient Peru. Neurosurgery. 2000;47(4):940–50.

    Article  Google Scholar 

  2. Warrell DA. The 1996 Runme Shaw Memorial Lecture: malaria—past, present and future. Ann Acad Med Singapore. 1997;26(3):380–7.

    CAS  Google Scholar 

  3. Paghdal KV, Schwartz RA. Topical tar: back to the future. J Am Acad Dermatol. 2009;61(2):294–302.

    Article  CAS  Google Scholar 

  4. Thami GP, Sarkar R. Coal tar: past, present and future. Clin Exp Dermatol. 2002;27(2):99–103.

    Article  Google Scholar 

  5. Feldmann H. History of injections. Pictures from the history of otorhinolaryngology highlighted by exhibits of the German History of Medicine Museum in Ingolstadt. Laryngorhinootologie. 2000;79(4):239–46.

    Article  CAS  Google Scholar 

  6. Kravetz RE. Hypodermic syringe. Am J Gastroenterol. 2005;100(12):2614.

    Article  Google Scholar 

  7. Jain RK. Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin Cancer Res. 1999;5(7):1605–6.

    CAS  Google Scholar 

  8. Wilding I. Site-specific drug delivery in the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst. 2000;17(6):557–620.

    Article  CAS  Google Scholar 

  9. Zarowitz BJ. Pharmacologic consideration of commonly used gastrointestinal drugs in the elderly. Gastroenterol Clin N Am. 2009;38(3):547–62.

    Article  Google Scholar 

  10. Dorski CM, Doyle FJ, Peppas NA. Preparation and characterization of glucose sensitive p(MAA-g-EG) hydrogels. Polym Mater Sci Eng Proc. 1997;76:281–2.

    Google Scholar 

  11. Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release. 2008;132(3):153–63.

    Article  CAS  Google Scholar 

  12. Sharp PA, Langer R. Promoting convergence in biomedical science. Science. 2011;333:521–2.

    Article  Google Scholar 

  13. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspensions. J Pharm Sci. 1961;50:874–5.

    Article  CAS  Google Scholar 

  14. Folkman J, Long DM. The use of silicone rubber as a carrier for prolonged drug therapy. J Surg Res. 1964;4:139–42.

    Article  CAS  Google Scholar 

  15. Langer RS, Peppas NA. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials. 1981;2:201–14.

    Article  CAS  Google Scholar 

  16. Lee PI. Diffusional release of a solute from a polymeric matrix. J Membr Sci. 1980;7:255.

    Article  CAS  Google Scholar 

  17. Brem H. Polymers to treat brain tumors. Biomaterials. 1990;11:699–710.

    Article  CAS  Google Scholar 

  18. Marty JJ, Oppenheim RC, Speiser P. Nanoparticles: a new colloidal drug delivery system. Pharm Acta Helv. 1976;53:17.

    Google Scholar 

  19. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986;46:6387–92.

    CAS  Google Scholar 

  20. Kreuter J. Nanoparticles—a historical perspective. Int J Pharm. 2007;331(1):1–10.

    Article  CAS  Google Scholar 

  21. Jain PJ, Ayen WY, Domb AJ, Kumar N. Biodegradable polymers in clinical use and clinical development. NJ: Wiley; 2011.

    Google Scholar 

  22. Robert O. Ebewele polymer science and technology. Technology & engineering. Boca Raton, FL: CRC Press; 2000. p. 6.

    Google Scholar 

  23. Tarcha PJ. Polymers for controlled drug delivery. Boca Raton, FL: CRC Press; 1990. p. 150.

    Google Scholar 

  24. Armiñán A, Sepúlveda P, Vicent MJ. Polymer therapeutics as nano-sized medicines for tissue regeneration and repair. In: Pradas MM, Vicent MJ, editors. Polymers in regenerative medicine: biomedical applications from nano- to macro-structures. Hoboken: Wiley; 2014. doi:10.1002/9781118356692.ch8.

    Google Scholar 

  25. Piskin E. Biodegradable polymers as biomaterials. J Biomater Sci Polym. 1994;6:775–95.

    Article  Google Scholar 

  26. Ghosh YJK, Shu XZ, et al. Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials. 2006;27(20):3782–92.

    Article  Google Scholar 

  27. Eaglstein WH, Falanga V. Tissue engineering and the development of Apligraf a human skin equivalent. Adv Wound Care. 1998;11(4):1–8.

    CAS  Google Scholar 

  28. Boyan BD, Lohmann CH, Romero J, Schwartz Z. Bone and cartilage tissue engineering. Clin Plast Surg. 1999;26(4):629–45.

    CAS  Google Scholar 

  29. Mayer J, Karamuk E, Akaike T, Wintermantel E. Matrices for tissue engineering-scaffold structure for a bioartificial liver support system. J Control Release. 2000;64(1–3):81–90.

    Article  CAS  Google Scholar 

  30. Mayer JE, Shin'oka T, Shum-Tim D. Tissue engineering of cardiovascular structures. Curr Opin Cardiol. 1997;12(6):528–32.

    Article  Google Scholar 

  31. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17(2):149–55.

    Article  CAS  Google Scholar 

  32. Tziampazis E, Sambanis A. Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function. Biotechnol Prog. 1995;11(2):115–26.

    Article  CAS  Google Scholar 

  33. Mohammad J, Shenaq J, Rabinovsky E, Shenaq S. Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg. 2000;105(2):660–6.

    Article  CAS  Google Scholar 

  34. Germain L, Auger FA, Grandbois E, et al. Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology. 1999;67(3):140–7.

    Article  CAS  Google Scholar 

  35. Diedwardo CA, Petrosko P, Acarturk TO, Dimilia PA, Laframboise WA, Johnson PC. Muscle tissue engineering. Clin Plast Surg. 1999;26(4):647–56.

    CAS  Google Scholar 

  36. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98.

    Article  CAS  Google Scholar 

  37. Yannas IV. Classes of materials used in medicine: natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons J, editors. Biomaterials science: an introduction to materials in medicine. San Diego, CA: Elsevier Academic Press; 2004. p. 127–36.

    Google Scholar 

  38. Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006;12:301–47.

    Article  CAS  Google Scholar 

  39. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30–40.

    Article  CAS  Google Scholar 

  40. Chen LJ, Wang M. Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials. 2002;23(13):2631–9.

    Article  CAS  Google Scholar 

  41. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81(7):1705–27.

    Article  CAS  Google Scholar 

  42. Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L. Bioartificial polymeric materials based on polysaccharides. J Biomater Sci. 2001;12(3):267–81.

    Article  CAS  Google Scholar 

  43. Ciardelli G, Chiono V, Vozzi G, et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6(4):1961–76.

    Article  CAS  Google Scholar 

  44. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérôme R. Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications. Biomaterials. 2002;23(18):3871–8.

    Article  CAS  Google Scholar 

  45. Atala A. Synthetic biodegradable polymer scaffolds. New York: Springer; 1997.

    Google Scholar 

  46. Kumbar S, Laurencin C, Deng M. Natural and synthetic biomedical polymers. Burlington: Elsevier; 2014.

    Google Scholar 

  47. Jani GK, Shah DP, Prajapati VD, Jain VC. Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci. 2009;4(5):309–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatia, S. (2016). Natural Polymers vs Synthetic Polymer. In: Natural Polymer Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-41129-3_3

Download citation

Publish with us

Policies and ethics