Skip to main content

Cosmic Microwave Background

  • Chapter
  • First Online:
Classical and Quantum Cosmology

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2570 Accesses

Abstract

The standard hot big bang model predicts that today the universe has a temperature of a few Kelvin [1]. In 1964, a background signal was discovered and found consistent with a black-body spectrum at the temperature of about 3 K [2], which was soon recognized as radiation from the primordial universe [3]. Later observations confirmed the black-body spectrum and defined the main characteristics of this radiation, such as the presence of tiny anisotropies in an otherwise extremely isotropic background (Fig. 4.1).

Philolaus puts fire in the middle, around the center, which he calls furnace of everything and abode of Zeus and mother of the gods and altar and junction and measure of nature. And then another fire at the top, surrounding the whole.

— Aëtius (ed. H. Diels), Doxographi Graeci, II 7,7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For instance, a non-scale-invariant primordial spectrum shifts (but only mildly) the position of the peaks, \(\Delta \ell_{i}/\ell_{i} \simeq n_{i}(n_{\mathrm{s}} - 1)\), where n i  ≪ 1 [67] and n s will be defined in (4.58).

  2. 2.

    This definition differs by a factor \(1/\sqrt{2}\) from that given in [95].

  3. 3.

    Also vector modes can potentially give rise to a curl-curl signal (for them, C BBC EE ∼ 6 at large [16]).

References

  1. R.A. Alpher, R.C. Hermann, Remarks on the evolution of the expanding universe. Phys. Rev. 75, 1089 (1949)

    Article  ADS  MATH  Google Scholar 

  2. A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  3. R.H. Dicke, P.J.E. Peebles, P.G. Roll, D.T. Wilkinson, Cosmic black-body radiation. Astrophys. J. 142, 414 (1965)

    Article  ADS  Google Scholar 

  4. http://map.gsfc.nasa.gov

  5. J.C. Mather et al., Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439 (1994)

    Article  ADS  Google Scholar 

  6. D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, The cosmic microwave background spectrum from the full COBE/FIRAS data set. Astrophys. J. 473, 576 (1996). [arXiv:astro-ph/9605054]

  7. W. Hu, N. Sugiyama, Anisotropies in the cosmic microwave background: an analytic approach. Astrophys. J. 444, 489 (1995). [arXiv:astro-ph/9407093]

  8. W. Hu, N. Sugiyama, Toward understanding CMB anisotropies and their implication. Phys. Rev. D 51, 2599 (1995). [arXiv:astro-ph/9411008]

  9. W. Hu, N. Sugiyama, Small scale cosmological perturbations: an analytic approach. Astrophys. J. 471, 542 (1996). [arXiv:astro-ph/9510117]

  10. W. Hu, M.J. White, The damping tail of CMB anisotropies. Astrophys. J. 479, 568 (1997). [arXiv:astro-ph/9609079]

  11. http://www.astro.ucla.edu/~wright/spectrum.gif

  12. R.A. Sunyaev, Ya.B. Zel’dovich, Microwave background radiation as a probe of the contemporary structure and history of the universe. Ann. Rev. Astron. Astrophys. 18, 537 (1980)

  13. M. Birkinshaw, The Sunyaev–Zel’dovich effect. Phys. Rep. 310, 97 (1999). [arXiv:astro-ph/9808050]

  14. W. Hu, J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles. Phys. Rev. Lett. 70, 2661 (1993)

    Article  ADS  Google Scholar 

  15. Ya.B. Zel’dovich, R.A. Sunyaev, The interaction of matter and radiation in a hot-model universe. Astrophys. Space Sci. 4, 301 (1969)

  16. D.H. Lyth, A.R. Liddle, The Primordial Density Perturbation (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  17. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  18. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  19. L.F. Abbott, M.B. Wise, Anisotropy of the microwave background in the inflationary cosmology. Phys. Lett. B 135, 279 (1984)

    Article  ADS  Google Scholar 

  20. L.F. Abbott, M.B. Wise, Large-scale anisotropy of the microwave background and the amplitude of energy density fluctuations in the early universe. Astrophys. J. 282, L47 (1984)

    Article  ADS  Google Scholar 

  21. R. Fabbri, F. Lucchin, S. Matarrese, Multipole anisotropies of the cosmic background radiation and inflationary models. Astrophys. J. 315, 1 (1987)

    Article  ADS  Google Scholar 

  22. N. Bartolo, E. Komatsu, S. Matarrese, A. Riotto, Non-Gaussianity from inflation: theory and observations. Phys. Rep. 402, 103 (2004). [arXiv:astro-ph/0406398]

  23. J.R. Bond, G. Efstathiou, The statistics of cosmic background radiation fluctuations. Mon. Not. R. Astron. Soc. 226, 655 (1987)

    Article  ADS  Google Scholar 

  24. W. Hu, S. Dodelson, Cosmic microwave background anisotropies. Ann. Rev. Astron. Astrophys. 40, 171 (2002). [arXiv:astro-ph/0110414]

  25. M. Tegmark, M. Zaldarriaga, Current cosmological constraints from a 10 parameter CMB analysis. Astrophys. J. 544, 30 (2000). [arXiv:astro-ph/0002091]

  26. http://www.esa.int/Our_Activities/Space_Science/Planck

  27. http://pla.esac.esa.int/pla/aio/index.html

  28. http://planck.caltech.edu/index.html

  29. R. Adam et al. [Planck Collaboration], Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594, A1 (2016). [arXiv:1502.01582]

  30. J. Silk, M.L. Wilson, Residual fluctuations in the matter and radiation distribution after the decoupling epoch. Physica Scripta 21, 708 (1980)

    Article  ADS  Google Scholar 

  31. D. Scott, M. Srednicki, M.J. White, ‘Sample variance’ in small scale CMB anisotropy experiments. Astrophys. J. 421, L5 (1994). [arXiv:astro-ph/9305030]

  32. J.B. Peterson et al., Cosmic microwave background observations in the post-Planck era. arXiv:astro-ph/9907276

  33. P.A.R. Ade et al. [Planck Collaboration], Planck 2015. XX. Constraints on inflation. Astron. Astrophys. 594, A20 (2016). [arXiv:1502.02114]

  34. A. Kogut et al., Dipole anisotropy in the COBE DMR first year sky maps. Astrophys. J. 419, 1 (1993). [arXiv:astro-ph/9312056]

  35. P.A.R. Ade et al. [Planck Collaboration], Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014) [arXiv:1303.5076]

  36. R.K. Sachs, A.M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73 (1967) [Gen. Relat. Grav. 39, 1929 (2007)]

  37. M.J. White, W. Hu, The Sachs–Wolfe effect. Astron. Astrophys. 321, 8 (1997). [arXiv:astro-ph/9609105]

  38. E.R. Harrison, Fluctuations at the threshold of classical cosmology. Phys. Rev. D 1, 2726 (1970)

    Article  ADS  Google Scholar 

  39. Ya.B. Zel’dovich, A hypothesis, unifying the structure and the entropy of the universe. Mon. Not. R. Astron. Soc. 160, 1P (1972)

  40. S. Eidelman et al. [Particle Data Group], Review of particle physics. Phys. Lett. B 592, 1 (2004). [arXiv:astro-ph/0406567]

  41. A.D. Sakharov, The initial stage of an expanding universe and the appearance of a nonuniform distribution of matter. Zh. Eksp. Teor. Fiz. 49, 345 (1965) [Sov. Phys. JETP 22, 241 (1966)]

  42. P.J.E. Peebles, J.T. Yu, Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815 (1970)

    Article  ADS  Google Scholar 

  43. W. Hu, N. Sugiyama, J. Silk, The physics of microwave background anisotropies. Nature 386, 37 (1997). [arXiv:astro-ph/9604166]

  44. J. Silk, Fluctuations in the primordial fireball. Nature 215, 1155 (1967)

    Article  ADS  Google Scholar 

  45. J. Silk, Cosmic black-body radiation and galaxy formation. Astrophys. J. 151, 459 (1968)

    Article  ADS  Google Scholar 

  46. W.T. Hu, Wandering in the Background: A CMB Explorer. Ph.D. thesis, UC Berkeley, Berkeley (1995). [arXiv:astro-ph/9508126]

  47. P.J.E. Peebles, The black-body radiation content of the universe and the formation of galaxies. Astrophys. J. 142, 1317 (1965)

    Article  ADS  Google Scholar 

  48. M.J. Rees, Cosmology and galaxy formation, in The Evolution of Galaxies and Stellar Populations, ed. by B.M. Tinsley, R.B. Larson (Yale University Observatory Publications, New Haven, 1977)

    Google Scholar 

  49. C.J. Hogan, A model of pregalactic evolution. Mon. Not. R. Astron. Soc. 188, 781 (1979)

    Article  ADS  Google Scholar 

  50. P.A.R. Ade et al. [Planck Collaboration], Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). [arXiv:1502.01589]

  51. R.A. Sunyaev, Ya.B. Zel’dovich, The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement. Mon. Not. R. Astron. Soc. 190, 413 (1980)

  52. E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). [arXiv:1001.4538]

  53. M. Zemcov et al., First detection of the Sunyaev–Zel’dovich effect increment at λ < 650μm. Astron. Astrophys. 518, L16 (2010). [arXiv:1005.3824]

  54. M.J. Rees, D.W. Sciama, Large-scale density inhomogeneities in the universe. Nature 217, 511 (1968)

    Article  ADS  Google Scholar 

  55. N. Padmanabhan, C.M. Hirata, U. Seljak, D. Schlegel, J. Brinkmann, D.P. Schneider, Correlating the CMB with luminous red galaxies: the integrated Sachs–Wolfe effect. Phys. Rev. D 72, 043525 (2005). [arXiv:astro-ph/0410360]

  56. B.R. Granett, M.C. Neyrinck, I. Szapudi, An imprint of superstructures on the microwave background due to the integrated Sachs–Wolfe effect. Astrophys. J. 683, L99 (2008). [arXiv:0805.3695]

  57. J.P. Ostriker, E.T. Vishniac, Generation of microwave background fluctuations from nonlinear perturbations at the era of galaxy formation. Astrophys. J. 306, L51 (1986)

    Article  ADS  Google Scholar 

  58. A. Blanchard, J. Schneider, Gravitational lensing effect on the fluctuations of the cosmic background radiation. Astron. Astrophys. 184, 1 (1987)

    ADS  Google Scholar 

  59. S. Cole, G. Efstathiou, Gravitational lensing of fluctuations in the microwave background radiation. Mon. Not. R. Astron. Soc. 239, 195 (1989)

    Article  ADS  Google Scholar 

  60. A. Lewis, A. Challinor, Weak gravitational lensing of the CMB. Phys. Rep. 429, 1 (2006). [arXiv:astro-ph/0601594]

  61. M. Kamionkowski, D.N. Spergel, N. Sugiyama, Small scale cosmic microwave background anisotropies as a probe of the geometry of the universe. Astrophys. J. 426, L57 (1994). [arXiv:astro-ph/9401003]

  62. P. de Bernardis et al. [Boomerang Collaboration], A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000). [arXiv:astro-ph/0004404]

  63. P. de Bernardis et al. [Boomerang Collaboration], Multiple peaks in the angular power spectrum of the cosmic microwave background: significance and consequences for cosmology. Astrophys. J. 564, 559 (2002). [arXiv:astro-ph/0105296]

  64. A. Balbi et al., Constraints on cosmological parameters from MAXIMA-1. Astrophys. J. 545, L1 (2000); Erratum-ibid. 558, L145 (2001). [arXiv:astro-ph/0005124]

  65. A.T. Lee et al., A high spatial resolution analysis of the MAXIMA-1 cosmic microwave background anisotropy data. Astrophys. J. 561, L1 (2001). [arXiv:astro-ph/0104459]

  66. R. Stompor et al., Cosmological implications of the MAXIMA-1 high resolution cosmic microwave background anisotropy measurement. Astrophys. J. 561, L7 (2001). [arXiv:astro-ph/0105062]

  67. W. Hu, M. Fukugita, M. Zaldarriaga, M. Tegmark, CMB observables and their cosmological implications. Astrophys. J. 549, 669 (2001). [arXiv:astro-ph/0006436]

  68. R. Durrer, B. Novosyadlyj, S. Apunevych, Acoustic peaks and dips in the CMB power spectrum: observational data and cosmological constraints. Astrophys. J. 583, 33 (2003). [arXiv:astro-ph/0111594]

  69. A.A. Starobinsky, Cosmic background anisotropy induced by isotropic flat-spectrum gravitational-wave perturbations. Sov. Astron. Lett. 11, 133 (1985)

    ADS  Google Scholar 

  70. M. Cortês, A.R. Liddle, P. Mukherjee, On what scale should inflationary observables be constrained? Phys. Rev. D 75, 083520 (2007). [arXiv:astro-ph/0702170]

  71. A. Kosowsky, M.S. Turner, CBR anisotropy and the running of the scalar spectral index. Phys. Rev. D 52, 1739 (1995). [arXiv:astro-ph/9504071]

  72. S. Pandolfi, A. Cooray, E. Giusarma, E.W. Kolb, A. Melchiorri, O. Mena, P. Serra, Harrison–Zel’dovich primordial spectrum is consistent with observations. Phys. Rev. D 81, 123509 (2010). [arXiv:1003.4763]

  73. P.A.R. Ade et al. [BICEP2 and Planck Collaborations], Joint analysis of BICEP2/Keck Array and Planck data. Phys. Rev. Lett. 114, 101301 (2015). [arXiv:1502.00612]

  74. P.A.R. Ade et al. [BICEP2 and Keck Array Collaborations], Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band. Phys. Rev. Lett. 116, 031302 (2016). [arXiv:1510.09217]

  75. J.P. Zibin, D. Scott, M.J. White, Limits on the gravity wave contribution to microwave anisotropies. Phys. Rev. D 60, 123513 (1999). [arXiv:astro-ph/9901028]

  76. M.S. Turner, M. White, J.E. Lidsey, Tensor perturbations in inflationary models as a probe of cosmology. Phys. Rev. D 48, 4613 (1993). [arXiv:astro-ph/9306029]

  77. B. Allen, The stochastic gravity-wave background: sources and detection, in Relativistic Gravitation and Gravitational Radiation, ed. by J.-A. Marck, J.-P. Lasota (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  78. S. Chongchitnan, G. Efstathiou, Prospects for direct detection of primordial gravitational waves. Phys. Rev. D 73, 083511 (2006). [arXiv:astro-ph/0602594]

  79. A. Stewart, R. Brandenberger, Observational constraints on theories with a blue spectrum of tensor modes. JCAP 0808, 012 (2008). [arXiv:0711.4602]

  80. J. Aasi et al. [The LIGO Scientific Collaboration], Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015). [arXiv:1411.4547]

  81. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], GW150914: the Advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 116, 131103 (2016). [arXiv:1602.03838]

  82. https://www.elisascience.org

  83. M.J. Rees, Polarization and spectrum of the primeval radiation in an anisotropic universe. Astrophys. J. 153, L1 (1968)

    Article  ADS  Google Scholar 

  84. M.M. Basko, A.G. Polnarev, Polarization and anisotropy of the relict radiation in an anisotropic universe. Mon. Not. R. Astron. Soc. 191, 207 (1980)

    Article  ADS  Google Scholar 

  85. M. Kaiser, Small-angle anisotropy of the microwave background radiation in the adiabatic theory. Mon. Not. R. Astron. Soc. 202, 1169 (1983)

    Article  ADS  Google Scholar 

  86. J.R. Bond, G. Efstathiou, Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. Astrophys. J. 285, L45 (1984)

    Article  ADS  Google Scholar 

  87. A.G. Polnarev, Polarization and anisotropy induced in the microwave background by cosmological gravitational waves. Astron. Zh. 62, 1041 (1985)

    ADS  Google Scholar 

  88. D.D. Harari, M. Zaldarriaga, Polarization of the microwave background in inflationary cosmology. Phys. Lett. B 319, 96 (1993). [arXiv:astro-ph/9311024]

  89. D. Coulson, R.G. Crittenden, N.G. Turok, Polarization and anisotropy of the microwave sky. Phys. Rev. Lett. 73, 2390 (1994). [arXiv:astro-ph/9406046]

  90. R.G. Crittenden, D. Coulson, N.G. Turok, Temperature-polarization correlations from tensor fluctuations. Phys. Rev. D 52, 5402 (1995). [arXiv:astro-ph/9411107]

  91. M. Zaldarriaga, D.D. Harari, Analytic approach to the polarization of the cosmic microwave background in flat and open universes. Phys. Rev. D 52, 3276 (1995). [arXiv:astro-ph/9504085]

  92. M. Kamionkowski, A. Kosowsky, A. Stebbins, A probe of primordial gravity waves and vorticity. Phys. Rev. Lett. 78, 2058 (1997). [arXiv:astro-ph/9609132]

  93. U. Seljak, M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background. Phys. Rev. Lett. 78, 2054 (1997). [arXiv:astro-ph/9609169]

  94. M. Zaldarriaga, U. Seljak, An all-sky analysis of polarization in the microwave background. Phys. Rev. D 55, 1830 (1997). [arXiv:astro-ph/9609170]

  95. M. Kamionkowski, A. Kosowsky, A. Stebbins, Statistics of cosmic microwave background polarization. Phys. Rev. D 55, 7368 (1997). [arXiv:astro-ph/9611125]

  96. D.N. Spergel, M. Zaldarriaga, CMB polarization as a direct test of inflation. Phys. Rev. Lett. 79, 2180 (1997). [arXiv:astro-ph/9705182]

  97. W. Hu, M.J. White, A CMB polarization primer. New Astron. 2, 323 (1997). [arXiv:astro-ph/9706147]

  98. A. Stebbins, Weak lensing on the celestial sphere. arXiv:astro-ph/9609149

  99. F.J. Zerilli, Tensor harmonics in canonical form for gravitational radiation and other applications. J. Math. Phys. 11, 2203 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  100. E.T. Newman, R. Penrose, Note on the Bondi–Metzner–Sachs group. J. Math. Phys. 7, 863 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  101. J.N. Goldberg, A.J. MacFarlane, E.T. Newman, F. Rohrlich, E.C.G. Sudarshan, Spin-s spherical harmonics and d H. J. Math. Phys. 8, 2155 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  102. S. Dodelson, Modern Cosmology (Academic Press, San Diego, 2003)

    Google Scholar 

  103. D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. 192, 16 (2011). [arXiv:1001.4635]

  104. P.A.R. Ade et al. [Planck Collaboration], Planck 2015 results. XV. Gravitational lensing. Astron. Astrophys. 594, A15 (2016). [arXiv:1502.01591]

  105. D. Hanson et al. [SPTpol Collaboration], Detection of B-mode polarization in the cosmic microwave background with data from the South Pole Telescope. Phys. Rev. Lett. 111, 141301 (2013). [arXiv:1307.5830]

  106. P.A.R. Ade et al. [POLARBEAR Collaboration], A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR. Astrophys. J. 794, 171 (2014). [arXiv:1403.2369]

  107. http://camb.info

  108. http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

  109. http://cosmologist.info/cosmomc

  110. http://www.class-code.net

  111. http://montepython.net

  112. N. Aghanim et al. [Planck Collaboration], Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters. Astron. Astrophys. 594, A11 (2016). [arXiv:1507.02704]

  113. C.L. Bennett et al. [WMAP Collaboration], Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. 208, 20 (2013). [arXiv:1212.5225]

  114. E. Komatsu et al., Non-Gaussianity as a probe of the physics of the primordial universe and the astrophysics of the low redshift universe. arXiv:0902.4759

  115. L. Verde, R. Jimenez, M. Kamionkowski, S. Matarrese, Tests for primordial non-Gaussianity. Mon. Not. R. Astron. Soc. 325, 412 (2001). [arXiv:astro-ph/0011180]

  116. L. Wang, M. Kamionkowski, Cosmic microwave background bispectrum and inflation. Phys. Rev. D 61, 063504 (2000). [arXiv:astro-ph/9907431]

  117. A. Gangui, J. Martin, Cosmic microwave background bispectrum and slow roll inflation. Mon. Not. R. Astron. Soc. 313, 323 (2000). [arXiv:astro-ph/9908009]

  118. E. Komatsu, D.N. Spergel, Acoustic signatures in the primary microwave background bispectrum. Phys. Rev. D 63, 063002 (2001). [arXiv:astro-ph/0005036]

  119. W. Hu, Angular trispectrum of the cosmic microwave background. Phys. Rev. D 64, 083005 (2001). [arXiv:astro-ph/0105117]

  120. N. Kogo, E. Komatsu, Angular trispectrum of CMB temperature anisotropy from primordial non-Gaussianity with the full radiation transfer function. Phys. Rev. D 73, 083007 (2006). [arXiv:astro-ph/0602099]

  121. R. Scaramella, N. Vittorio, Non-Gaussian temperature fluctuations in the cosmic microwave background sky from a random Gaussian density field. Astrophys. J. 375, 439 (1991)

    Article  ADS  Google Scholar 

  122. J.N. Fry, Gravity, bias, the galaxy three-point correlation function. Phys. Rev. Lett. 73, 215 (1994)

    Article  ADS  Google Scholar 

  123. S. Matarrese, L. Verde, A.F. Heavens, Large-scale bias in the Universe: bispectrum method. Mon. Not. R. Astron. Soc. 290, 651 (1997). [arXiv:astro-ph/9706059]

  124. E. Sefusatti, E. Komatsu, The bispectrum of galaxies from high-redshift galaxy surveys: primordial non-Gaussianity and non-linear galaxy bias. Phys. Rev. D 76, 083004 (2007). [arXiv:0705.0343]

  125. A. Gangui, F. Lucchin, S. Matarrese, S. Mollerach, The three-point correlation function of the cosmic microwave background in inflationary models. Astrophys. J. 430, 447 (1994). [arXiv:astro-ph/9312033]

  126. L. Verde, L. Wang, A. Heavens, M. Kamionkowski, Large-scale structure, the cosmic microwave background, and primordial non-Gaussianity. Mon. Not. R. Astron. Soc. 313, L141 (2000). [arXiv:astro-ph/9906301]

  127. E. Komatsu, D.N. Spergel, B.D. Wandelt, Measuring primordial non-Gaussianity in the cosmic microwave background. Astrophys. J. 634, 14 (2005). [arXiv:astro-ph/0305189]

  128. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models. JHEP 0305, 013 (2003). [arXiv:astro-ph/0210603]

  129. D. Babich, P. Creminelli, M. Zaldarriaga, The shape of non-Gaussianities. JCAP 0408, 009 (2004). [arXiv:astro-ph/0405356]

  130. P. Creminelli, M. Zaldarriaga, Single field consistency relation for the 3-point function. JCAP 0410, 006 (2004). [arXiv:astro-ph/0407059]

  131. P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, M. Zaldarriaga, Limits on non-Gaussianities from WMAP data. JCAP 0605, 004 (2006). [arXiv:astro-ph/0509029]

  132. L. Senatore, K.M. Smith, M. Zaldarriaga, Non-Gaussianities in single field inflation and their optimal limits from the WMAP 5-year data. JCAP 1001, 028 (2010). [arXiv:0905.3746]

  133. P.A.R. Ade et al. [Planck Collaboration], Planck 2015 results. XVII. Constraints on primordial non-Gaussianity. Astron. Astrophys. 594, A17 (2016). [arXiv:1502.01592]

  134. F. De Bernardis, P. Serra, A. Cooray, A. Melchiorri, Constraints on primordial non-Gaussianity from WMAP7 and luminous red galaxies power spectrum and forecast for future surveys. Phys. Rev. D 82, 083511 (2010). [arXiv:1004.5467]

  135. C.T. Byrnes, S. Nurmi, G. Tasinato, D. Wands, Scale dependence of local f NL . JCAP 1002, 034 (2010). [arXiv:0911.2780]

  136. J. Smidt, A. Amblard, C.T. Byrnes, A. Cooray, D. Munshi, CMB constraints on primordial non-Gaussianity from the bispectrum and trispectrum and a consistency test of single-field inflation. Phys. Rev. D 81, 123007 (2010). [arXiv:1004.1409]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calcagni, G. (2017). Cosmic Microwave Background. In: Classical and Quantum Cosmology. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-41127-9_4

Download citation

Publish with us

Policies and ethics