Skip to main content

Perspective

  • Chapter
  • First Online:
Classical and Quantum Cosmology

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2534 Accesses

Abstract

Observations have verified the cosmic concordance model to a high degree of accuracy.

And I said to my spirit, When we become the enfolders of those orbs and the pleasure and knowledge of every thing in them, shall we be filled and satisfied then?

And my spirit said No, we level that lift to pass and continue beyond.

— Walt Whitman, Leaves of Grass (1855 edition)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Ahmed et al. [BICEP3 Collaboration], BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization. Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531N (2014). [arXiv:1407.5928]

  2. W.L.K. Wu et al., Initial performance of BICEP3: a degree angular scale 95 GHz band polarimeter. J. Low Temp. Phys. 184, 765 (2016). [arXiv:1601.00125]

  3. T. Matsumura et al., Mission design of LiteBIRD. J. Low. Temp. Phys. 176, 733 (2014). [arXiv:1311.2847]

  4. J. Martin, C. Ringeval, V. Vennin, Encyclopædia inflationaris. Phys. Dark Univ. 5–6, 75 (2014). [arXiv:1303.3787]

  5. J. Martin, C. Ringeval, R. Trotta, V. Vennin, The best inflationary models after Planck. JCAP 1403, 039 (2014). [arXiv:1312.3529]

  6. J.-Q. Xia, Y.-F. Cai, H. Li, X. Zhang, Evidence for bouncing evolution before inflation after BICEP2. Phys. Rev. Lett. 112, 251301 (2014). [arXiv:1403.7623]

  7. P. Creminelli, D. López Nacir, M. Simonović, G. Trevisan, M. Zaldarriaga, Detecting primordial B-modes after Planck. JCAP 1511, 031 (2015). [arXiv:1502.01983]

  8. M. Remazeilles, C. Dickinson, H.K.K. Eriksen, I.K. Wehus, Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions. Mon. Not. R. Astron. Soc.458, 2032 (2016). [arXiv:1509.04714]

  9. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). [arXiv:1602.03837]

  10. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016). [arXiv:1606.04855]

  11. S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, J. Silk, Forecast constraints on cosmic string parameters from gravitational wave direct detection experiments. Phys. Rev. D 86, 023503 (2012). [arXiv:1202.3032]

  12. S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, J. Silk, Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments. Phys. Rev. D 87, 023522 (2013); Erratum-ibid. D 87, 069903(E) (2013). [arXiv:1210.2829]

  13. J. Aasi et al. [The LIGO Scientific Collaboration], Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015). [arXiv:1411.4547]

  14. https://www.advancedligo.mit.edu

  15. T. Accadia et al., Status of the Virgo project. Class. Quantum Grav. 28, 114002 (2011)

    Article  ADS  Google Scholar 

  16. K. Kuroda [LCGT Collaboration], Status of LCGT. Class. Quantum Grav. 27, 084004 (2010)

  17. C.S. Unnikrishnan, IndIGO and LIGO-India: scope and plans for gravitational wave research and precision metrology in India. Int. J. Mod. Phys. D 22, 1341010 (2013). [arXiv:1510.06059]

  18. https://www.ligo.caltech.edu/news/ligo20160217

  19. https://www.elisascience.org

  20. P. Amaro-Seoane et al., eLISA/NGO: astrophysics and cosmology in the gravitational-wave millihertz regime. GW Notes 6, 4 (2013). [arXiv:1201.3621]

  21. N. Seto, S. Kawamura, T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001). [arXiv:astro-ph/0108011]

  22. S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO. Class. Quantum Grav. 28, 094011 (2011)

    Article  ADS  Google Scholar 

  23. http://www.atnf.csiro.au/research/pulsar/ppta

  24. R.D. Ferdman et al., The European Pulsar Timing Array: current efforts and a LEAP toward the future. Class. Quantum Grav. 27, 084014 (2010). [arXiv:1003.3405]

  25. P.B. Demorest et al., Limits on the stochastic gravitational wave background from the North American Nanohertz Observatory for Gravitational Waves. Astrophys. J. 762, 94 (2013). [arXiv:1201.6641]

  26. http://www.skatelescope.org

  27. S. Kuroyanagi, S. Tsujikawa, T. Chiba, N. Sugiyama, Implications of the B-mode polarization measurement for direct detection of inflationary gravitational waves. Phys. Rev. D 90, 063513 (2014). [arXiv:1406.1369]

  28. S. Kuroyanagi, K. Nakayama, S. Saito, Prospects for determination of thermal history after inflation with future gravitational wave detectors. Phys. Rev. D 84, 123513 (2011). [arXiv:1110.4169]

  29. S.B. Giddings, Gravitational wave tests of quantum modifications to black hole structure. Class. Quantum Grav. 33, 235010 (2016). [arXiv:1602.03622]

  30. J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Comments on graviton propagation in light of GW150914. Mod. Phys. Lett. A 31, 1675001 (2016). [arXiv:1602.04764]

  31. M. Arzano, G. Calcagni, What gravity waves are telling about quantum spacetime. Phys. Rev. D 93, 124065 (2016). [arXiv:1604.00541]

  32. G. Calcagni, Lorentz violations in multifractal spacetimes. arXiv:1603.03046

  33. http://www.nasa.gov/mission_pages/GLAST/main/index.html

  34. http://www.euclid-ec.org

  35. L. Amendola et al. [Euclid Theory Working Group Collaboration], Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relat. 16, 6 (2013). [arXiv:1206.1225]

  36. S. Joudaki et al., KiDS-450: testing extensions to the standard cosmological model. arXiv:1610.04606

  37. N. Arkani-Hamed, S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC. JHEP 0506, 073 (2005). [arXiv:hep-th/0405159]

  38. G.F. Giudice, A. Romanino, Split supersymmetry. Nucl. Phys. B 699, 65 (2004); Erratum-ibid. B 706, 65 (2005). [arXiv:hep-ph/0406088]

  39. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice, A. Romanino, Aspects of split supersymmetry. Nucl. Phys. B 709, 3 (2005). [arXiv:hep-ph/0409232]

  40. I. Antoniadis, S. Dimopoulos, Splitting supersymmetry in string theory. Nucl. Phys. B 715, 120 (2005). [arXiv:hep-th/0411032]

  41. N. Arkani-Hamed, S. Dimopoulos, S. Kachru, Predictive landscapes and new physics at a TeV. arXiv:hep-th/0501082

  42. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner, T. Zorawski, Simply unnatural supersymmetry. arXiv:1212.6971

  43. V. Agrawal, S.M. Barr, J.F. Donoghue, D. Seckel, Viable range of the mass scale of the standard model. Phys. Rev. D 57, 5480 (1998). [arXiv:hep-ph/9707380]

  44. G. Aad et al. [ATLAS Collaboration], Search for high-mass diphoton resonances in p p collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. Phys. Rev. D 92, 032004 (2015). [arXiv:1504.05511]

  45. V. Khachatryan et al. [CMS Collaboration], Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \(\sqrt{s} =\) 8 TeV. Phys. Lett. B 750, 494 (2015). [arXiv:1506.02301]

  46. A. Strumia, Interpreting the 750 GeV digamma excess: a review. arXiv:1605.09401

  47. S.W. Hawking, Black hole explosions. Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  48. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975); Erratum-Ibid. 46, 206 (1976)

  49. W.G. Unruh, Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351 (1981)

    Article  ADS  Google Scholar 

  50. L.J. Garay, J.R. Anglin, J.I. Cirac, P. Zoller, Black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643 (2000). [arXiv:gr-qc/0002015]

  51. C. Barceló, S. Liberati, M. Visser, Analog gravity from Bose–Einstein condensates. Class. Quantum Grav. 18, 1137 (2001). [arXiv:gr-qc/0011026]

  52. J. Steinhauer, Observation of self-amplifying Hawking radiation in an analog black hole laser. Nat. Phys. 10, 864 (2014). [arXiv:1409.6550]

  53. J. Steinhauer, Observation of thermal Hawking radiation and its entanglement in an analogue black hole. Nature Phys. 12, 959 (2016). [arXiv:1510.00621]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calcagni, G. (2017). Perspective. In: Classical and Quantum Cosmology. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-41127-9_14

Download citation

Publish with us

Policies and ethics