Advertisement

MSO-definable Properties of Muller Context-Free Languages Are Decidable

  • Zoltán Ésik
  • Szabolcs IvánEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)

Abstract

We show that it is decidable given an MSO-definable property P of countable words and a Muller context-free grammar G, whether every word in the language generated by G satisfies P.

Keywords

Finite Automaton Countable Word Regular Tree Acceptance Condition Derivation Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bedon, N.: Finite automata and ordinals. Theor. Comput. Sci. 156(1–2), 119–144 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bedon, N., Bès, A., Carton, O., Rispal, C.: Logic and rational languages of words indexed by linear orderings. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 76–85. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bès, A., Carton, O.: A kleene theorem for languages of words indexed by linear orderings. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 158–167. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Boasson, L.: Context-free sets of infinite words. In: Weihrauch, K. (ed.) Theoretical Computer Science 4th GI Conference. LNCS, vol. 67, pp. 1–9. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  5. 5.
    Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. Syst. Sci. 73(1), 1–24 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Richard Büchi, J.: The monadic second order theory of \(\omega _1\). In: Müller, G.H., Siefkes, D. (eds.) Decidable Theories II. Lecture Notes in Mathematics, vol. 328, pp. 1–127. Springer, Heidelberg (1973)CrossRefGoogle Scholar
  7. 7.
    Choueka, Y.: Finite automata, definable sets, and regular expressions over \(\omega ^n\)-tapes. J. Comput. Syst. Sci. 17(1), 81–97 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen, R.S., Gold, A.Y.: Theory of \(\omega \)-languages, parts one and two. J. Comput. Syst. Sci. 15, 169–208 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Courcelle, B.: Frontiers of infinite trees. RAIRO - Theor. Inf. Appl. - Informatique Théorique et Applications 12(4), 319–337 (1978)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ésik, Z., Iván, S.: Büchi context-free languages. Theor. Comput. Sci. 412(8–10), 805–821 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ésik, Z., Iván, S.: On Müller context-free grammars. Theor. Comput. Sci. 416, 17–32 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nivat, M.: Sur les ensembles de mots infinis engendrés par une grammaire algébrique. RAIRO - Theor. Inf. Appl. - Informatique Théorique et Applications 12(3), 259–278 (1978)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Perrin, D., Pin, J.É.: Infinite Words: Automata, Semigroups, Logic and Games. Pure and Applied Mathematics. Elsevier Science (2004)Google Scholar
  14. 14.
    Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Trans. AMS 141, 1–35 (1969)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Rosenstein, J.G.: Linear Orderings. Pure and Applied Mathematics. Academic Press, London (1982)zbMATHGoogle Scholar
  16. 16.
    Wojciechowski, J.: Classes of transfinite sequences accepted by finite automata. Fundamenta Informaticae 7(2), 191–223 (1984)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wojciechowski, J.: Finite automata on transfinite sequences and regular expressions. Fundamenta Informaticae 8(3–4), 379–396 (1985)MathSciNetzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.University of SzegedSzegedHungary

Personalised recommendations