Completely Reachable Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9777)

Abstract

We present a few results and several open problems concerning complete deterministic finite automata in which every non-empty subset of the state set occurs as the image of the whole state set under the action of a suitable input word.

Keywords

Deterministic finite automaton Complete reachability Transition monoid Syntactic complexity PSPACE-completeness 

References

  1. 1.
    Adler, R.L., Goodwyn, L.W., Weiss, B.: Equivalence of topological Markov shifts. Isr. J. Math. 27, 49–63 (1977)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ananichev, D.S., Gusev, V.V., Volkov, M.V.: Primitive digraphs with large exponents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bondar, E.: \({\cal L}\)-cross-sections of the finite symmetric semigroup. Algebra and Discrete Math. 18(1), 27–41 (2014)MathSciNetMATHGoogle Scholar
  4. 4.
    Bondar, E.: Classification of \({\cal L}\)-cross-sections of \({\cal T}_{n}\). Algebra Discrete Math. 21(1), 1–17 (2016)Google Scholar
  5. 5.
    Brandl, C., Simon, H.U.: Complexity analysis: transformation monoids of finite automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 143–154. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Brzozowski, J.A., Li, B.: Syntactic complexity of \({\cal R}\) and \({\cal J}\)-trivial regular languages. Int. J. Found. Comput. Sci. 25(7), 807–822 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brzozowski, J., Szykuła, M.: Upper bound on syntactic complexity of suffix-free languages. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 33–45. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964). (in Slovak)Google Scholar
  9. 9.
    Don, H.: The Černý conjecture and 1-contracting automata. CoRR, abs/1507.06070 (2015). http://arxiv.org/abs/1507.06070
  10. 10.
    Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Inform. Théor. Appl. 32(1–3), 21–34 (1998). (in French)MathSciNetGoogle Scholar
  11. 11.
    Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: 21st Annual Symposium on Foundations of Computer Science, pp. 36–41. IEEE Computer Society, Washington (1980)Google Scholar
  12. 12.
    Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups: An Introduction. Springer, Heidelberg (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Goralčík, P., Koubek, V.: Rank problems for composite transformations. Int. J. Algebra Comput. 5(3), 309–316 (1995)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium on Foundations of Computer Science, pp. 254–266. IEEE Computer Society, Washington (1977)Google Scholar
  15. 15.
    Maslennikova, M.I.: Reset complexity of ideal languages. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Špánek, R., Turán, G. (eds.) 38th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2012, vol. II, pp. 33–44. Institute of Computer Science Academy of Sciences of the Czech Republic, Prague (2012)Google Scholar
  16. 16.
    Maslennikova, M.I.: Reset complexity of ideal languages. CoRR, abs/1404.2816 (2014). http://arxiv.org/abs/1404.2816
  17. 17.
    Trahtman, A.N.: The road coloring problem. Isr. J. Math. 172, 51–60 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Volkov, M.V.: Synchronizing Automata and the Černý Conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceUral Federal UniversityYekaterinburgRussia

Personalised recommendations