The Evolution of Human Skin and the Thousands of Species It Sustains, with Ten Hypothesis of Relevance to Doctors

Chapter

Abstract

The entire skin is covered in microscopic life. The composition of this life—which species are present—has great importance for many aspects of dermatology. Little about this composition makes sense, except in light of evolution.

Keywords

Armpits Bacteria Belly buttons Genitals Wafting 

References

  1. 1.
    Leider M, Buncke CM. Physical dimensions of the skin: determination of the specific gravity of skin, hair, and nail. AMA Arch Dermatol Syphilol. 1954;69(5):563–9.CrossRefGoogle Scholar
  2. 2.
    Goldsmith LA. My organ is bigger than your organ. Arch Dermatol. 1990;126(3):301–2.CrossRefPubMedGoogle Scholar
  3. 3.
    Peschel A, Jack RW, Otto M, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 2001;193:1067–76.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hulcr J, Latimer AM, Henley JB, Rountree NR, Fierer N, Lucky A, et al. A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS One. 2012;7(11):e47712.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kong HH. Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med. 2011;17(6):320–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Christensen G, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014;5(2):201–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Park B, Iwase T, Liu GY. Intranasal application of S. epidermidis prevents colonization by methicillin-resistant Staphylococcus aureus in mice. PLoS One. 2011;6(10):e25880.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Tlaskalová-Hogenová H, Štěpánková R, Hudcovic T, Tučková L, Cukrowska B, Lodinová-Žádnı́ková R, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 2004;93(2):97–108.CrossRefPubMedGoogle Scholar
  11. 11.
    Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Theis KR, Schmidt TM, Holekamp KE. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep. 2012;2:615.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Verhulst NO, Beijleveld H, Knols BG, Takken W, Schraa G, Bouwmeester HJ, et al. Cultured skin microbiota attracts malaria mosquitoes. Malar J. 2009;8(1):302.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Verhulst NO, Qiu YT, Beijleveld H, Maliepaard C, Knights D, Schulz S, et al. Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS One. 2011;6(12):e28991.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hadorn B, Hanimann F, Anders P, Curtius HC, Halverson R. Free amino-acids in human sweat from different parts of the body. Nature (Lond). 1967;215:416.CrossRefGoogle Scholar
  16. 16.
    Ara K, et al. Foot odor due to microbial metabolism and its control. Can J Microbiol. 2006;52:357–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Landy MWGH, Roseman SB, Colio LG. Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med. 1948;67:539–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Program NCS, Murray PR, Turner ML, Segre JA. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Palopoli MF, et al. Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genomics. 2014;15(1):1124.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Thoemmes MS, et al. Ubiquity and diversity of human-associated Demodex mites. PLoS One. 2014;9:e106265.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Palopoli MF, et al. Global divergence of the human follicle mite Demodex folliculorum: persistent associations between host ancestry and mite lineages. Proc Natl Acad Sci. 2015;112:15958–63.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Council SE, Savage AM, Urban JM, et al. Diversity and evolution of the primate skin microbiome. Proc Biol Sci. 2016;283(1822):pii: 20152586.Google Scholar
  24. 24.
    James AG, Austin CJ, Cox DS, Taylor D, Calvert R. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol. 2013;83(3):527–40.CrossRefPubMedGoogle Scholar
  25. 25.
    Leyden JJ, McGinley KJ, Hölzle E, Labows JN, Kligman AM. The microbiology of the human axilla and its relationship to axillary odor. J Invest Dermatol. 1981;77(5):413–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Montagna W. The evolution of human skin. J Hum Evol. 1985;14(1):3–22.CrossRefGoogle Scholar
  27. 27.
    Ellis RA, Montagna W. The skin of primates. VI. The skin of the gorilla (Gorilla gorilla). Am J Phys Anthropol. 1962;20(2):79–93.CrossRefPubMedGoogle Scholar
  28. 28.
    Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, et al. The bonobo genome compared with the chimpanzee and human genomes. Nature. 2012;486(7404):527–31.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Folk Jr GE, Semken Jr A. The evolution of sweat glands. Int J Biometeorol. 1991;35(3):180–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Kushlan JA. The evolution of hairlessness in man. Am Nat. 1980;116:727–9.CrossRefGoogle Scholar
  31. 31.
    Shelley WB, Hurley HJ, Nichols AC. Axillary odor: experimental study of the role of bacteria, apocrine sweat, and deodorants. AMA Arch Dermatol Syphilol. 1953;68(4):430–46.CrossRefGoogle Scholar
  32. 32.
    Urban J, Fergus DJ, Savage AM, Ehlers M, Menninger HL, Dunn RR, Horvath JE. The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome. Peer J. 2016;4:e1605. https://doi.org/10.7717/peerj.1605.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A. Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci U S A. 2006;103(20):7765–70.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Applied Ecology and Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighUSA
  2. 2.Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations