Advertisement

Event Simulation

  • Javier Montejo BerlingenEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The precise comparison of observed data with the theoretical predictions is necessary to quantify the consistency with the SM or some of its possible extensions. The simulation of the physics processes and the interaction of particles with the detector is therefore needed to model the expected contributions from different background or signal sources. Computer programs known as Monte Carlo (MC) event generators are able to simulate events from defined physics processes. Pseudo-random numbers are used to simulate individual events reproducing on average the predicted distributions. Finally MC techniques are also used to simulate the interaction of particles with the detector materials and the read-out of the detector.

Keywords

Monte Carlo Parton Shower Underlying Event Virtual Correction Monte Carlo Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Collins JC, Soper DE, Sterman GF (1988) Factorization of hard processes in QCD. Adv Ser Direct High Energy Phys 5:1–91. arXiv:hep-ph/0409313 [hep-ph]
  2. 2.
    Lee TD, Nauenberg M (1964) Degenerate Systems and Mass Singularities. Phys Rev 133:1549ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Kinoshita T (1962) Mass singularities of feynman amplitudes. J Math Phys 3(4):650Google Scholar
  4. 4.
    Catani S, Krauss F, Kuhn R, Webber B (2001) QCD matrix elements + parton showers. JHEP 0111:063. arXiv:hep-ph/0109231 [hep-ph]
  5. 5.
    Mangano ML, Moretti M, Piccinini F, Treccani M (2007) Matching matrix elements and shower evolution for top-quark production in hadronic collisions. JHEP 0701:013. arXiv:hep-ph/0611129 [ep-ph]
  6. 6.
    Catani S, Dokshitzer YL, Olsson M, Turnock G, Webber B (1991) New clustering algorithm for multi-jet cross-sections in e+ e- annihilation. Phys Lett B 269:432ADSCrossRefGoogle Scholar
  7. 7.
    Andersson B, Gustafson G, Ingelman G, Sjostrand T (1983) Parton fragmentation and string dynamics. Phys Rept 97:31–145ADSCrossRefGoogle Scholar
  8. 8.
    Sjostrand T (1984) Jet fragmentation of nearby partons. Nucl Phys B 248:469ADSCrossRefGoogle Scholar
  9. 9.
    Webber B (1984) A QCD model for jet fragmentation including soft gluon interference. Nucl Phys B 238:492ADSCrossRefGoogle Scholar
  10. 10.
    Marchesini G, Webber B (1988) Monte Carlo Simulation of General Hard Processes with Coherent QCD Radiation. Nucl Phys B 310:461ADSCrossRefGoogle Scholar
  11. 11.
    ATLAS collaboration (2014) Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector. Eur Phys J C 74(8):2965. arXiv:1406.0392 [ep-ex]
  12. 12.
    Sjöstrand T, Mrenna S, Skands PZ (2006) PYTHIA 6.4 physics and manual. JHEP 0605:026. arXiv:hep-ph/0603175 [ep-ph]
  13. 13.
    Butterworth J, Forshaw J, Seymour M (1996) Multiparton interactions in photoproduction at HERA. Z Phys C 72:637. arXiv: 601371 [hep-ph]
  14. 14.
    Corcella G, Knowles I, Marchesini G, Moretti S, Odagiri K et al (2001) HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP 0101:010. arXiv:hep-ph/0011363 [ep-ph]
  15. 15.
    Butterworth J, Forshaw JR, Seymour M (1996) Multiparton interactions in photoproduction at HERA. Z. Phys. C 72:637. arXiv:hep-ph/9601371 [ep-ph]
  16. 16.
    Mangano ML, Moretti M, Piccinini F, Pittau R, Polosa AD (2003) ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP 0307:001. arXiv:hep-ph/0206293 [ep-ph]
  17. 17.
    Alwall J, Herquet M, Maltoni F, Mattelaer O, Stelzer T (2011) MadGraph 5: Going Beyond. JHEP 1106:128. arXiv:1106.0522 [ep-ph]
  18. 18.
    Gleisberg T, Hoeche S, Krauss F, Schonherr M, Schumann S et al (2009) Event generation with SHERPA 1.1. JHEP 0902:007. arXiv:0811.4622 [ep-ph]
  19. 19.
    Schumann S, Krauss F (2008) A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 0803:038. arXiv:0709.1027 [ep-ph]
  20. 20.
    Hoeche S, Krauss F, Schumann S, Siegert F (2009) QCD matrix elements and truncated showers. JHEP 0905:053. arXiv:0903.1219 [ep-ph]
  21. 21.
    Frixione S, Nason P, Oleari C (2007) Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 0711:070. arXiv:0709.2092 [ep-ph]
  22. 22.
    Cascioli F, Maierhofer P, Pozzorini S (2012) Scattering amplitudes with open loops. Phys Rev Lett 108:111601. arXiv:1111.5206 [ep-ph]
  23. 23.
    Agostinelli S et al (2003) Geant4 - A Simulation Toolkit. Nucl Instr Meth A506:250Google Scholar
  24. 24.
    Lukas W (2012) Fast simulation for ATLAS: Atlfast-II and ISF. J Phys Conf Ser Nucl Instr Meth 396Google Scholar
  25. 25.
    ATLAS collaboration (2010) The ATLAS simulation infrastructure. Eur Phys J C 70:823. arXiv:1005.4568 [hysics.ins-det]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de Física de Altas EnergíasUniversitat Autónoma de BarcelonaBellaterra, BarcelonaSpain

Personalised recommendations